Microwave catalytic co-pyrolysis of microalgae and high density polyethylene over activated carbon supported bimetallic: Characteristics and bio-oil analysis

被引:1
|
作者
Fan, Dianzhao [1 ]
Yang, Ronglin [1 ]
Chen, Chunxiang [1 ,2 ,3 ]
Qiu, Song [1 ]
He, Shiyuan [1 ]
Shi, Haosen [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Univ Rd 100, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Petrochem Resources Proc & Proc In, Nanning 530004, Peoples R China
[3] Guangdong Prov Key Lab Efficient & Clean Energy Ut, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
High density polyethylene; Chlorella vulgaris; Activated carbon supported catalysts; Microwave co-pyrolysis; Bio-oil; CHLORELLA-VULGARIS; POLYPROPYLENE; KINETICS; BIOMASS; TOLUENE;
D O I
10.1016/j.renene.2024.121323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three activated carbon (AC) supported bimetallic catalysts (Ce-Fe/AC, Ce-Ni/AC, Ce-Cu/AC) were prepared, and the catalysts' impacts on the microwave co-pyrolysis of Chlorella vulgaris (C. vulgaris) and high density polyethylene (HDPE) (mixing ratio of 1:1, C1HP1) were explored. The findings indicated that the catalysts promoted the co-pyrolysis of C1HP1 substantially at 40 % and 50 % additions. The minimum reaction time (2945 s) was observed at 40 % Ce-Fe/AC. Compared to the C1HP1 group, Ce-Fe/AC groups exhibited a pronounced promotional impact on bio-oil production, with the maximum bio-oil yield (25.8 %) catalyzed by 30 % Ce-Fe/AC. Furthermore, the catalyst's high hydrogenation activity and deoxygenation promoted the formation of H2O, NH3 and HCN, achieving over 40 % efficiencies in deoxygenation and denitrification for bio-oil. 40 % Ce-Cu/AC exhibited superior performance with the highest hydrocarbon (67.43 %) and aromatic hydrocarbon content (50.75 %), as well as leading deoxygenation (44.38 %) and nitrogen removal (58.63 %) efficiency among the AC supported bimetallic catalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Co-pyrolysis of sewage sludge and pinewood sawdust: the synergistic effect and bio-oil characteristics
    Bai, Jisong
    Fu, Xin
    Lv, Quanwei
    Chen, Fangjun
    Yang, Yu
    Wang, Jun
    Gan, Wei
    Deng, Fucan
    Zhu, Chenxuan
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (10) : 9205 - 9212
  • [22] Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
    Duan, Dengle
    Wang, Yunpu
    Dai, Leilei
    Ruan, Roger
    Zhao, Yunfeng
    Fan, Liangliang
    Tayier, Maimaitiaili
    Liu, Yuhuan
    BIORESOURCE TECHNOLOGY, 2017, 241 : 207 - 213
  • [23] Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective
    Su, Guangcan
    Ong, Hwai Chyuan
    Gan, Yong Yang
    Chen, Wei-Hsin
    Chong, Cheng Tung
    Ok, Yong Sik
    BIORESOURCE TECHNOLOGY, 2022, 344
  • [24] Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism
    Qiu, Zhenzi
    Zhai, Yunbo
    Li, Shanhong
    Liu, Xiangmin
    Liu, Xiaoping
    Wang, Bei
    Liu, Yali
    Li, Caiting
    Hu, Yanjun
    WASTE MANAGEMENT, 2020, 114 : 225 - 233
  • [25] Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite
    Hassan, H.
    Lim, J. K.
    Hameed, B. H.
    BIORESOURCE TECHNOLOGY, 2019, 284 : 406 - 414
  • [26] Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil
    Zhang, Xikui
    Yu, Zhaosheng
    Lu, Xiaoluan
    Ma, Xiaoqian
    BIORESOURCE TECHNOLOGY, 2021, 319
  • [27] Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil
    Hassan, H.
    Lim, J. K.
    Hameed, B. H.
    BIORESOURCE TECHNOLOGY, 2016, 221 : 645 - 655
  • [28] The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating
    Bu, Quan
    Cao, Mengjie
    Wang, Mei
    Zhang, Xiaodong
    Mao, Hanping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 754
  • [29] Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production
    Wang, Yunpu
    Dai, Leilei
    Fan, Liangliang
    Cao, Leipeng
    Zhou, Yue
    Zhao, Yunfeng
    Liu, Yuhuan
    Ruan, Roger
    WASTE MANAGEMENT, 2017, 61 : 276 - 282
  • [30] Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores
    Wang, Jingyue
    Wu, Liu
    Huang, Fanfan
    Liang, Jie
    FUEL, 2025, 382