Phage defence loci of Streptococcus thermophilus-tip of the anti-phage iceberg?

被引:0
|
作者
Kelleher, Philip [1 ]
Charneco, Guillermo Ortiz [1 ]
Kampff, Zoe [1 ]
Diaz-Garrido, Natalia [1 ]
Bottacini, Francesca [2 ]
McDonnell, Brian [1 ]
Lugli, Gabriele A. [3 ]
Ventura, Marco [3 ]
Fomenkov, Alexey [4 ]
Quenee, Pascal [5 ]
Kulakauskas, Saulius [5 ]
de Waal, Paul [6 ]
van Peij, Noel N. M. E. [6 ]
Cambillau, Christian [1 ,7 ]
Roberts, Richard John [4 ]
van Sinderen, Douwe [1 ]
Mahony, Jennifer [1 ]
机构
[1] Univ Coll Cork, Sch Microbiol & APC Microbiome Ireland, Cork T12YN60, Ireland
[2] Munster Technol Univ, Dept Biol Sci, Cork, Ireland
[3] Univ Parma, Dept Chem Life Sci & Environm Sustainabil, Lab Probiogen, Parma, Italy
[4] New England Biolabs Inc, Ipswich, MA USA
[5] Univ Paris Saclay, Micalis Inst, INRAE, AgroParisTech, Jouy En Josas, France
[6] Ctr Food Innovat, Dsm Firmenich Taste Texture & Hlth, Alexander Fleminglaan 1, NL-2613AX Delft, Netherlands
[7] Aix Marseille Univ, CNRS, Inst Microbiol Bioenergies & Biotechnol IMM, Lab Ingenierie Syst Macromol LISM,UMR 7255, Marseille, France
基金
爱尔兰科学基金会; 美国国家卫生研究院;
关键词
CRYSTAL-STRUCTURE; PROTECT BACTERIA; SIR2; DNA; MECHANISM; IMMUNITY; SYSTEMS;
D O I
10.1093/nar/gkae814
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S. thermophilus using a collection of 27 strains as representatives of the species. In addition to CRISPR-Cas and R/M systems, we uncover nine distinct phage-resistance systems including homologues of Kiwa, Gabija, Dodola, defence-associated sirtuins and classical lactococcal/streptococcal abortive infection systems. The genes encoding several of these newly identified S. thermophilus antiphage systems are located in proximity to the genetic determinants of CRISPR-Cas systems thus constituting apparent Phage Defence Islands. Other phage-resistance systems whose encoding genes are not co-located with genes specifying CRISPR-Cas systems may represent anchors to identify additional Defence Islands harbouring, as yet, uncharacterised phage defence systems. We estimate that up to 2.5% of the genetic material of the analysed strains is dedicated to phage defence, highlighting that phage-host antagonism plays an important role in driving the evolution and shaping the composition of dairy streptococcal genomes. Graphical Abstract
引用
收藏
页码:11853 / 11869
页数:17
相关论文
共 35 条
  • [1] Structural basis of Gabija anti-phage defence and viral immune evasion
    Antine, Sadie P.
    Johnson, Alex G.
    Mooney, Sarah E.
    Leavitt, Azita
    Mayer, Megan L.
    Yirmiya, Erez
    Amitai, Gil
    Sorek, Rotem
    Kranzusch, Philip J.
    NATURE, 2024, 625 (7994) : 360 - 365
  • [2] DISARM is a widespread bacterial defence system with broad anti-phage activities
    Ofir, Gal
    Melamed, Sarah
    Sberro, Hila
    Mukamel, Zohar
    Silverman, Shahar
    Yaakov, Gilad
    Doron, Shany
    Sorek, Rotem
    NATURE MICROBIOLOGY, 2018, 3 (01): : 90 - 98
  • [3] CARD domains mediate anti-phage defence in bacterial gasdermin systems
    Wein, Tanita
    Millman, Adi
    Lange, Katharina
    Yirmiya, Erez
    Hadary, Romi
    Garb, Jeremy
    Melamed, Sarah
    Amitai, Gil
    Dym, Orly
    Steinruecke, Felix
    Hill, Aidan B.
    Kranzusch, Philip J.
    Sorek, Rotem
    NATURE, 2025, : 727 - 734
  • [4] Molecular basis of Gabija anti-phage supramolecular assemblies
    Yang, Xiao-Yuan
    Shen, Zhangfei
    Xie, Jiale
    Greenwald, Jacelyn
    Marathe, Ila
    Lin, Qingpeng
    Xie, Wen Jun
    Wysocki, Vicki H.
    Fu, Tian-Min
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (08) : 1243 - 1250
  • [5] Cyclic pyrimidines jump on the anti-phage bandwagon
    Maxwell, Karen L.
    CELL, 2021, 184 (23) : 5691 - 5693
  • [6] Bacterial defense systems exhibit synergistic anti-phage activity
    Wu, Yi
    Garushyants, Sofya K.
    Hurk, Anne van den
    Aparicio-Maldonado, Cristian
    Kushwaha, Simran Krishnakant
    King, Claire M.
    Ou, Yaqing
    Todeschini, Thomas C.
    Clokie, Martha R. J.
    Millard, Andrew D.
    Gencay, Yilmaz Emre
    Koonin, Eugene V.
    Nobrega, Franklin L.
    CELL HOST & MICROBE, 2024, 32 (04) : 557 - 572.e6
  • [7] Structures and activation mechanism of the Gabija anti-phage system
    Li, Jing
    Cheng, Rui
    Wang, Zhiming
    Yuan, Wuliu
    Xiao, Jun
    Zhao, Xinyuan
    Du, Xinran
    Xia, Shiyu
    Wang, Lianrong
    Zhu, Bin
    Wang, Longfei
    NATURE, 2024, 629 (8011) : 467 - 473
  • [8] DNA end sensing and cleavage by the Shedu anti-phage defense system
    Loeff, Luuk
    Walter, Alexander
    Rosalen, Gian Tizio
    Jinek, Martin
    CELL, 2025, 188 (03)
  • [9] Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems
    Millman, Adi
    Melamed, Sarah
    Amitai, Gil
    Sorek, Rotem
    NATURE MICROBIOLOGY, 2020, 5 (12) : 1608 - +
  • [10] PtuA and PtuB assemble into an inflammasome-like oligomer for anti-phage defense
    Li, Yuanyuan
    Shen, Zhangfei
    Zhang, Mengyuan
    Yang, Xiao-Yuan
    Cleary, Sean P.
    Xie, Jiale
    Marathe, Ila A.
    Kostelic, Marius
    Greenwald, Jacelyn
    Rish, Anthony D.
    Wysocki, Vicki H.
    Chen, Chong
    Chen, Qiang
    Fu, Tian-Min
    Yu, Yamei
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (03) : 413 - 423