Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops

被引:2
|
作者
Wang, Yu [1 ,2 ]
机构
[1] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[2] Nanjing Univ, Sch Life Sci, Nanjing 210008, Peoples R China
来源
CROP AND ENVIRONMENT | 2024年 / 3卷 / 04期
关键词
C; 3; photosynthesis; 4; Photosynthetic induction; PPDK regulatory protein; Rubisco activase; Stomatal conductance; LEAF HYDRAULIC CONDUCTANCE; BUNDLE-SHEATH CONDUCTANCE; WATER-USE EFFICIENCY; GLOBAL FOOD DEMAND; MESOPHYLL CONDUCTANCE; RUBISCO ACTIVASE; RIBULOSE 1,5-BISPHOSPHATE; STOMATAL CONDUCTANCE; TEMPERATURE RESPONSE; ACCELERATING RECOVERY;
D O I
10.1016/j.crope.2024.06.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Photosynthetic adaptations to light fluctuations do not occur instantaneously, leading to reduced carbon gain and lower productivity in agricultural crops. Enhancing the rapidity of photosynthetic responses to these fluctuations could potentially increase carbon assimilation by 13-32%, indicating a substantial opportunity for yield improvement of major crops. Most crops can be categorized into C-3 or C-4 crops by their photosynthetic pathways. This review provides a comparative overview of the photosynthetic responses of both C-3 and C-4 crops to light fluctuations, highlighting the unique and shared challenges for these two photosynthetic pathways. In C-3 crops, fast adjustments in non-photochemical quenching, stomatal and mesophyll conductance, and Rubisco activation are essential for optimizing photosynthesis under variable light conditions. In contrast, C-4 crops, including maize, sorghum, and sugarcane, benefit from their carbon concentration mechanism under high light conditions but face challenges in coordinating the C-4 and Calvin-Benson-Bassham cycles. Strategies to enhance the activation of pyruvate phosphate dikinase and Rubisco, as well as to improve electron transport capacity and flexibility, could markedly boost the photosynthetic efficiency and productivity. Through a detailed understanding of the distinct mechanisms involved in C-3 and C-4 photosynthesis, this review underscores the need for tailored strategies to optimize the photosynthetic efficiency specific to each crop type. Exploring and leveraging these differences is crucial for propelling agricultural productivity forward.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [31] Photosynthetic responses of C3 and C4 species to seasonal water variability and competition
    Niu, SL
    Yuan, ZY
    Zhang, YF
    Liu, WX
    Zhang, L
    Huang, JH
    Wan, SQ
    JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (421) : 2867 - 2876
  • [32] Ontogenetic derivation and cell differentiation in photosynthetic tissues of C3 and C4 Cyperaceae
    Soros, CL
    Dengler, NG
    AMERICAN JOURNAL OF BOTANY, 2001, 88 (06) : 992 - 1005
  • [33] DECLINE IN PERCENTAGE N OF C3 AND C4 CROPS WITH INCREASING PLANT MASS
    GREENWOOD, DJ
    LEMAIRE, G
    GOSSE, G
    CRUZ, P
    DRAYCOTT, A
    NEETESON, JJ
    ANNALS OF BOTANY, 1990, 66 (04) : 425 - 436
  • [34] Photosynthetic acclimation and resource use by the C3 and C4 subspecies of Alloteropsis semialata in low CO2 atmospheres
    Ripley, Brad S.
    Cunniff, Jennifer
    Osborne, Colin P.
    GLOBAL CHANGE BIOLOGY, 2013, 19 (03) : 900 - 910
  • [35] Comparison of climate change impacts on the growth of C3 and C4 crops in China
    Wang, Yuying
    Liu, Suning
    Shi, Haiyun
    ECOLOGICAL INFORMATICS, 2023, 74
  • [36] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Peixi Su
    Qiaodi Yan
    Tingting Xie
    Zijuan Zhou
    Song Gao
    Acta Physiologiae Plantarum, 2012, 34 : 2057 - 2068
  • [37] Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species
    Su, Peixi
    Yan, Qiaodi
    Xie, Tingting
    Zhou, Zijuan
    Gao, Song
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (06) : 2057 - 2068
  • [38] Influences of residual stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species
    Ye, Zi Piao
    He, Jian Qiang
    An, Ting
    Duan, Shi Hua
    Kang, Hua Jing
    Wang, Fu Biao
    AGRICULTURAL WATER MANAGEMENT, 2024, 306
  • [39] Quantification of leaf gas exchange characteristics of dominant C3/C4 plants at the Kalahari transect
    Yu, M.
    Gao, Q.
    Epstein, H. E.
    Dowty, P.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2009, 75 (03) : 518 - 525
  • [40] Steady-state stomatal responses of C3 and C4 species to blue light fraction: Interactions with CO2 concentration
    Zhen, Shuyang
    Bugbee, Bruce
    PLANT CELL AND ENVIRONMENT, 2020, 43 (12) : 3020 - 3032