Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops

被引:2
|
作者
Wang, Yu [1 ,2 ]
机构
[1] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[2] Nanjing Univ, Sch Life Sci, Nanjing 210008, Peoples R China
来源
CROP AND ENVIRONMENT | 2024年 / 3卷 / 04期
关键词
C; 3; photosynthesis; 4; Photosynthetic induction; PPDK regulatory protein; Rubisco activase; Stomatal conductance; LEAF HYDRAULIC CONDUCTANCE; BUNDLE-SHEATH CONDUCTANCE; WATER-USE EFFICIENCY; GLOBAL FOOD DEMAND; MESOPHYLL CONDUCTANCE; RUBISCO ACTIVASE; RIBULOSE 1,5-BISPHOSPHATE; STOMATAL CONDUCTANCE; TEMPERATURE RESPONSE; ACCELERATING RECOVERY;
D O I
10.1016/j.crope.2024.06.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Photosynthetic adaptations to light fluctuations do not occur instantaneously, leading to reduced carbon gain and lower productivity in agricultural crops. Enhancing the rapidity of photosynthetic responses to these fluctuations could potentially increase carbon assimilation by 13-32%, indicating a substantial opportunity for yield improvement of major crops. Most crops can be categorized into C-3 or C-4 crops by their photosynthetic pathways. This review provides a comparative overview of the photosynthetic responses of both C-3 and C-4 crops to light fluctuations, highlighting the unique and shared challenges for these two photosynthetic pathways. In C-3 crops, fast adjustments in non-photochemical quenching, stomatal and mesophyll conductance, and Rubisco activation are essential for optimizing photosynthesis under variable light conditions. In contrast, C-4 crops, including maize, sorghum, and sugarcane, benefit from their carbon concentration mechanism under high light conditions but face challenges in coordinating the C-4 and Calvin-Benson-Bassham cycles. Strategies to enhance the activation of pyruvate phosphate dikinase and Rubisco, as well as to improve electron transport capacity and flexibility, could markedly boost the photosynthetic efficiency and productivity. Through a detailed understanding of the distinct mechanisms involved in C-3 and C-4 photosynthesis, this review underscores the need for tailored strategies to optimize the photosynthetic efficiency specific to each crop type. Exploring and leveraging these differences is crucial for propelling agricultural productivity forward.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [11] High photosynthetic capacity of Sahelian C3 and C4 plants
    Sibret, Thomas
    Verbruggen, Wim
    Peaucelle, Marc
    Verryckt, Lore T.
    Bauters, Marijn
    Combe, Marie
    Boeckx, Pascal
    Verbeeck, Hans
    PHOTOSYNTHESIS RESEARCH, 2021, 147 (02) : 161 - 175
  • [12] Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective
    Way, Danielle A.
    Katul, Gabriel G.
    Manzoni, Stefano
    Vico, Giulia
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (13) : 3683 - 3693
  • [13] Stomatal Conductance Is Essential for Higher Yield Potential of C3 Crops
    Roche, Dominique
    CRITICAL REVIEWS IN PLANT SCIENCES, 2015, 34 (04) : 429 - 453
  • [14] Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)?
    Driever, Steven M.
    Kromdijk, Johannes
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (13) : 3925 - 3935
  • [15] Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants
    Kataria, Sunita
    Guruprasad, K. N.
    Ahuja, Sumedha
    Singh, Bupinder
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2013, 127 : 140 - 152
  • [16] CO2 availability influences hydraulic function of C3 and C4 grass leaves
    Taylor, Samuel H.
    Aspinwall, Michael J.
    Blackman, Chris J.
    Choat, Brendan
    Tissue, David T.
    Ghannoum, Oula
    JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (10) : 2731 - 2741
  • [17] Increased bundle-sheath leakiness of CO2 during photosynthetic induction shows a lack of coordination between the C4 and C3 cycles
    Wang, Yu
    Stutz, Samantha S.
    Bernacchi, Carl J.
    Boyd, Ryan A.
    Ort, Donald R.
    Long, Stephen P.
    NEW PHYTOLOGIST, 2022, 236 (05) : 1661 - 1675
  • [18] Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model
    Hartzell, Samantha
    Bartlett, Mark S.
    Porporato, Amilcare
    ECOLOGICAL MODELLING, 2018, 384 : 173 - 187
  • [19] C3 and C4 photosynthesis models: An overview from the perspective of crop modelling
    Yin, X.
    Struik, P. C.
    NJAS-WAGENINGEN JOURNAL OF LIFE SCIENCES, 2009, 57 (01) : 27 - 38
  • [20] Short-term elevated temperature and CO2 promote photosynthetic induction in the C3 plant Glycine max, but not in the C4 plant Amaranthus tricolor
    Zheng, Tianyu
    Yu, Yuan
    Kang, Huixing
    FUNCTIONAL PLANT BIOLOGY, 2022, 49 (11) : 995 - 1007