EuroPED-NN: uncertainty aware surrogate model

被引:2
作者
Panera Alvarez, A. [1 ,2 ]
Ho, A. [1 ,3 ]
Jarvinen, A. [4 ]
Saarelma, S. [5 ]
Wiesen, S. [1 ,6 ]
机构
[1] Dutch Inst Fundamental Energy Res, DIFFER, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, NL-5612 AZ Eindhoven, Netherlands
[3] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[4] VTT, VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
[5] Culham Sci Ctr, Culham Ctr Fus Energy, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England
[6] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, DE-52425 Julich, Germany
关键词
nuclear fusion; machine learning; pedestal; uncertainty; Bayesian neural network; artificial intelligence; PLASMAS; INSTABILITIES; TRANSPORT; PHYSICS;
D O I
10.1088/1361-6587/ad6707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work successfully generates an uncertainty-aware surrogate model of the EuroPED plasma pedestal model using the Bayesian neural network with noise contrastive prior (BNN-NCP) technique. This model is trained using data from the JET-ILW pedestal database and subsequent model evaluations, conforming to EuroPED-NN. The BNN-NCP technique has been proven to be a suitable method for generating uncertainty-aware surrogate models. It matches the output results of a regular neural network while providing confidence estimates for predictions as uncertainties. Additionally, it highlights out-of-distribution regions using surrogate model uncertainties. This provides critical insights into model robustness and reliability. EuroPED-NN has been physically validated, first, analyzing electron density ne(psi pol=0.94) with respect to increasing plasma current, Ip , and second, validating the Delta-beta p,ped relation associated with the EuroPED model. This affirms the robustness of the underlying physics learned by the surrogate model. On top of that, the method was used to develop a EuroPED-like model fed with experimental data, i.e. an uncertainty aware experimental model, which is functional in JET database. Both models have been also tested in similar to 50 AUG shots.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
Abadi M., 2016, arXiv, DOI [DOI 10.48550/ARXIV.1603.04467, 10.48550/arXiv.1603.04467]
[3]  
Chollet F., 2015, Keras
[4]   Gyrokinetic simulations compared with magnetic fluctuations diagnosed with a Faraday-effect radial interferometer-polarimeter in the DIII-D pedestal [J].
Curie, M. T. ;
Hatch, D. R. ;
Halfmoon, M. ;
Chen, J. ;
Brower, D. L. ;
Hassan, E. ;
Kotschenreuther, M. ;
Mahajan, S. M. ;
Groebner, R. J. .
NUCLEAR FUSION, 2022, 62 (12)
[5]   Magnetic control of tokamak plasmas through deep reinforcement learning [J].
Degrave, Jonas ;
Felici, Federico ;
Buchli, Jonas ;
Neunert, Michael ;
Tracey, Brendan ;
Carpanese, Francesco ;
Ewalds, Timo ;
Hafner, Roland ;
Abdolmaleki, Abbas ;
de las Casas, Diego ;
Donner, Craig ;
Fritz, Leslie ;
Galperti, Cristian ;
Huber, Andrea ;
Keeling, James ;
Tsimpoukelli, Maria ;
Kay, Jackie ;
Merle, Antoine ;
Moret, Jean-Marc ;
Noury, Seb ;
Pesamosca, Federico ;
Pfau, David ;
Sauter, Olivier ;
Sommariva, Cristian ;
Coda, Stefano ;
Duval, Basil ;
Fasoli, Ambrogio ;
Kohli, Pushmeet ;
Kavukcuoglu, Koray ;
Hassabis, Demis ;
Riedmiller, Martin .
NATURE, 2022, 602 (7897) :414-+
[6]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[7]   Validation of a new mixed Bohm/gyro-Bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges [J].
Erba, M ;
Aniel, T ;
Basiuk, V ;
Becoulet, A ;
Litaudon, X .
NUCLEAR FUSION, 1998, 38 (07) :1013-1028
[8]   Pedestal structure, stability and scalings in JET-ILW: the EUROfusion JET-ILW pedestal database [J].
Frassinetti, L. ;
Saarelma, S. ;
Verdoolaege, G. ;
Groth, M. ;
Hillesheim, J. C. ;
Bilkova, P. ;
Bohm, P. ;
Dunne, M. ;
Fridstrom, R. ;
Giovannozzi, E. ;
Imbeaux, F. ;
Labit, B. ;
de la Luna, E. ;
Maggi, C. ;
Owsiak, M. ;
Scannell, R. .
NUCLEAR FUSION, 2021, 61 (01)
[9]   Enabling adaptive pedestals in predictive transport simulations using neural networks [J].
Gillgren, A. ;
Fransson, E. ;
Yadykin, D. ;
Frassinetti, L. ;
Strand, P. .
NUCLEAR FUSION, 2022, 62 (09)
[10]   ROLE OF EDGE ELECTRIC-FIELD AND POLOIDAL ROTATION IN THE L-H TRANSITION [J].
GROEBNER, RJ ;
BURRELL, KH ;
SERAYDARIAN, RP .
PHYSICAL REVIEW LETTERS, 1990, 64 (25) :3015-3018