In this paper, we study the asymptotic distribution of coefficients of general L-functions over arithmetic progressions without the Ramanujan conjecture. As an application, we consider the high mean of Fourier coefficients of holomorphic forms or Maass forms for Gamma = SL(2, Z) over arithmetic progressions, and improve the results of Jiang and L & uuml; [10]. Our new results remove the restriction to prime module and improve the interval length of module q. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Peoples R China
Weinan Normal Univ, Qindong Math Res Inst, Weinan 714099, Peoples R ChinaWeinan Normal Univ, Sch Math & Stat, Weinan 714099, Peoples R China
机构:
Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R ChinaWeinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
机构:
Georg Augustus Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, GermanyGeorg Augustus Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
Han, Xue
Liu, Huafeng
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China