Multiscale-integrated deep learning approaches for short-term load forecasting

被引:2
|
作者
Yang, Yang [1 ]
Gao, Yuchao [1 ]
Wang, Zijin [1 ]
Li, Xi'an [2 ]
Zhou, Hu [1 ]
Wu, Jinran [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210023, Jiangsu, Peoples R China
[2] Ceyear Technol Co Ltd, Qingdao 266555, Shandong, Peoples R China
[3] Australian Catholic Univ, North Sydney, NSW 2060, Australia
关键词
Deep learning; Time series decomposition; Load forecasting; Outliers; Robust regression; SUPPORT VECTOR REGRESSION; EMPIRICAL MODE DECOMPOSITION; NEURAL-NETWORK; ALGORITHM;
D O I
10.1007/s13042-024-02302-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.
引用
收藏
页码:6061 / 6076
页数:16
相关论文
共 50 条
  • [41] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [42] Deep Ensemble Learning Model for Short-Term Load Forecasting within Active Learning Framework
    Wang, Zengping
    Zhao, Bing
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    ENERGIES, 2019, 12 (20)
  • [43] The new hybrid approaches to forecasting short-term electricity load
    Fan, Guo-Feng
    Liu, Yan-Rong
    Wei, Hui-Zhen
    Yu, Meng
    Li, Yin-He
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [44] Short-Term Load Forecasting Using Wavenet Ensemble Approaches
    Ribeiro, Gabriel Trierweiler
    Gritti, Marcos Cesar
    Hultmann Ayala, Helon Vicente
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 727 - 734
  • [45] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [46] Deep Learning for Short-Term Load Forecasting-Industrial Consumer Case Study
    Ungureanu, Stefan
    Topa, Vasile
    Cziker, Andrei Cristinel
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [47] Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
    Guo, Wei
    Zhang, Kai
    Wei, Xinjie
    Liu, Mei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [48] Hierarchical Multiobjective Distributed Deep Learning for Residential Short-Term Electric Load Forecasting
    Sakuma, Yuiko
    Nishi, Hiroaki
    IEEE ACCESS, 2022, 10 : 69950 - 69962
  • [49] Machine Learning Approach for Short-Term Load Forecasting Using Deep Neural Network
    Alotaibi, Majed A.
    ENERGIES, 2022, 15 (17)
  • [50] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,