Multiscale-integrated deep learning approaches for short-term load forecasting

被引:2
|
作者
Yang, Yang [1 ]
Gao, Yuchao [1 ]
Wang, Zijin [1 ]
Li, Xi'an [2 ]
Zhou, Hu [1 ]
Wu, Jinran [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210023, Jiangsu, Peoples R China
[2] Ceyear Technol Co Ltd, Qingdao 266555, Shandong, Peoples R China
[3] Australian Catholic Univ, North Sydney, NSW 2060, Australia
关键词
Deep learning; Time series decomposition; Load forecasting; Outliers; Robust regression; SUPPORT VECTOR REGRESSION; EMPIRICAL MODE DECOMPOSITION; NEURAL-NETWORK; ALGORITHM;
D O I
10.1007/s13042-024-02302-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.
引用
收藏
页码:6061 / 6076
页数:16
相关论文
共 50 条
  • [11] Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
    Son, Namrye
    SUSTAINABILITY, 2021, 13 (22)
  • [12] An integrated federated learning algorithm for short-term load forecasting
    Yang, Yang
    Wang, Zijin
    Zhao, Shangrui
    Wuc, Jinran
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [13] A modified deep residual network for short-term load forecasting
    Kondaiah, V. Y.
    Saravanan, B.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [14] An integrated federated learning algorithm for short-term load forecasting
    Yang, Yang
    Wang, Zijin
    Zhao, Shangrui
    Wu, Jinran
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [15] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09) : 1094 - 1099
  • [16] A combined deep learning application for short term load forecasting
    Ozer, Ilyas
    Efe, Serhat Berat
    Ozbay, Harun
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (04) : 3807 - 3818
  • [17] Short-Term Load Forecasting for Electric Vehicle Charging Stations Based on Deep Learning Approaches
    Zhu, Juncheng
    Yang, Zhile
    Guo, Yuanjun
    Zhang, Jiankang
    Yang, Huikun
    APPLIED SCIENCES-BASEL, 2019, 9 (09):
  • [18] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [19] An effective deep learning neural network model for short-term load forecasting
    Li, Ning
    Wang, Lu
    Li, Xinquan
    Zhu, Qing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (07)
  • [20] A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid
    Hong, Ye
    Zhou, Yingjie
    Li, Qibin
    Xu, Wenzheng
    Zheng, Xiujuan
    IEEE ACCESS, 2020, 8 (08): : 55785 - 55797