Multiscale-integrated deep learning approaches for short-term load forecasting

被引:2
|
作者
Yang, Yang [1 ]
Gao, Yuchao [1 ]
Wang, Zijin [1 ]
Li, Xi'an [2 ]
Zhou, Hu [1 ]
Wu, Jinran [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210023, Jiangsu, Peoples R China
[2] Ceyear Technol Co Ltd, Qingdao 266555, Shandong, Peoples R China
[3] Australian Catholic Univ, North Sydney, NSW 2060, Australia
关键词
Deep learning; Time series decomposition; Load forecasting; Outliers; Robust regression; SUPPORT VECTOR REGRESSION; EMPIRICAL MODE DECOMPOSITION; NEURAL-NETWORK; ALGORITHM;
D O I
10.1007/s13042-024-02302-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate short-term load forecasting (STLF) is crucial for the power system. Traditional methods generally used signal decomposition techniques for feature extraction. However, these methods are limited in extrapolation performance, and the parameter of decomposition modes needs to be preset. To end this, this paper develops a novel STLF algorithm based on multi-scale perspective decomposition. The proposed algorithm adopts the multi-scale deep neural network (MscaleDNN) to decompose load series into low- and high-frequency components. Considering outliers of load series, this paper introduces the adaptive rescaled lncosh (ARlncosh) loss to fit the distribution of load data and improve the robustness. Furthermore, the attention mechanism (ATTN) extracts the correlations between different moments. In two power load data sets from Portugal and Australia, the proposed model generates competitive forecasting results.
引用
收藏
页码:6061 / 6076
页数:16
相关论文
共 50 条
  • [1] A comprehensive review on deep learning approaches for short-term load forecasting
    Eren, Yavuz
    Kucukdemiral, Ibrahim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 189
  • [2] Short-Term Load Forecasting of Integrated Energy Systems Based on Deep Learning
    Huan, Jiajia
    Hong, Haifeng
    Pan, Xianxian
    Sui, Yu
    Zhang, Xiaohui
    Jiang, Xuedong
    Wang, Chaoqun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 16 - 20
  • [3] A deep learning model for short-term power load and probability density forecasting
    Guo, Zhifeng
    Zhou, Kaile
    Zhang, Xiaoling
    Yang, Shanlin
    ENERGY, 2018, 160 : 1186 - 1200
  • [4] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18) : 15029 - 15041
  • [5] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [6] EMD-Att-LSTM: A Data-driven Strategy Combined with Deep Learning for Short-term Load Forecasting
    Neeraj
    Mathew, Jimson
    Behera, Ranjan Kumar
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (05) : 1229 - 1240
  • [7] Review of Deep Learning Application for Short-Term Household Load Forecasting
    Apolo Penaloza, Ana Karen
    Balbinot, Alexandre
    Leborgne, Roberto Chouhy
    2020 IEEE PES TRANSMISSION & DISTRIBUTION CONFERENCE AND EXHIBITION - LATIN AMERICA (T&D LA), 2020,
  • [8] Short-Term Load Forecasting Based on a Hybrid Deep Learning Model
    Agana, Norbert A.
    Oleka, Emmanuel
    Awogbami, Gabriel
    Homaifar, Abdollah
    IEEE SOUTHEASTCON 2018, 2018,
  • [9] Short-term load forecasting based on CEEMDAN and dendritic deep learning
    Song, Keyu
    Yu, Yang
    Zhang, Tengfei
    Li, Xiaosi
    Lei, Zhenyu
    He, Houtian
    Wang, Yizheng
    Gao, Shangce
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [10] A hybrid deep learning algorithm for short-term electric load forecasting
    Bulus, Kurtulus
    Zor, Kasim
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,