Carbon-based phase change composites with directional high thermal conductivity for interface thermal management

被引:14
作者
Zhao, Zhengchuang [1 ]
Liu, Wenjia [1 ]
Du, Ruxue [1 ]
Wang, Siqi [1 ]
Han, Han [1 ]
Jing, Yaoge [1 ]
Wu, Si [1 ,2 ]
Wang, Ruzhu [1 ,2 ]
Li, Tingxian [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Sch Mech Engn, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Res Ctr Solar Power & Refrigerat, Minist Educ, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
基金
国家自然科学基金重大项目; 中国博士后科学基金;
关键词
Phase change composite; Graphite nanoplatelets; Thermal transport; High-power-density device; Thermal management; ENERGY-CONVERSION; PERFORMANCE; GRAPHITE; NETWORKS; GRAPHENE; STORAGE; PARAFFIN; FOAM;
D O I
10.1016/j.cej.2024.154305
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phase change materials (PCMs) can provide a buffer platform for thermal management systems to deal with thermal runaway problems. However, prompt heat dissipation and cost-effective thermal regulation in desired devices are still limited by insufficient thermal transport behavior and liquid leakage of PCMs. Here, we report a facile strategy to develop high-power-density device by carbon-based phase change composites (PCCs) with directional high thermal conductivity. The synergistic effect of self-assembled aligned graphite nanoplatelets (GNPs) inside the resultant PCCs on thermal transport and structural reinforcement enable the PCCs to show high thermal conductivity (in-plane K-PCCs of up to 32.86 W m(-1) K-1), large heat storage density (158.2-248.3 J g(-1)), thermal cycling stability, and leakage-proof properties. Furthermore, a PCC-based high-power-density energy device is demonstrated for the tunable thermal regulation by coordinating the orientation of GNPs heat conduction skeleton inside the PCCs with the thermal transport direction of device. The PCC-based module maintains a suitable temperature range of 149-151 degrees C under various operating conditions and exhibits a decrease of similar to 10 degrees C in the surface peak temperature of power device, showing excellent temperature control performance. Our work holds promising application prospects in the engineering scalable functional PCCs for thermal regulation of electronics and interface thermal management.
引用
收藏
页数:12
相关论文
共 64 条
[1]   Phase change material-integrated latent heat storage systems for sustainable energy solutions [J].
Aftab, Waseem ;
Usman, Ali ;
Shi, Jinming ;
Yuan, Kunjie ;
Qin, Mulin ;
Zou, Ruqiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) :4268-4291
[2]   Polyurethane-based flexible and conductive phase change composites for energy conversion and storage [J].
Aftab, Waseem ;
Mahmood, Asif ;
Guo, Wenhan ;
Yousaf, Muhammad ;
Tabassum, Hassina ;
Huang, Xinyu ;
Liang, Zibin ;
Cao, Anyuan ;
Zou, Ruqiang .
ENERGY STORAGE MATERIALS, 2019, 20 :401-409
[3]   Nanoconfined phase change materials for thermal energy applications [J].
Aftab, Waseem ;
Huang, Xinyu ;
Wu, Wenhao ;
Liang, Zibin ;
Mahmood, Asif ;
Zou, Ruqiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1392-1424
[4]   Vertical Array of Graphite Oxide Liquid Crystal by Microwire Shearing for Highly Thermally Conductive Composites [J].
Cao, Min ;
Li, Zheng ;
Lu, Jiahao ;
Wang, Bo ;
Lai, Haiwen ;
Li, Zeshen ;
Gao, Yue ;
Ming, Xin ;
Luo, Shiyu ;
Peng, Li ;
Xu, Zhen ;
Liu, Senping ;
Liu, Yingjun ;
Gao, Chao .
ADVANCED MATERIALS, 2023, 35 (22)
[5]   Composite phase change materials of ultra-high molecular weight polyethylene/paraffin wax/carbon nanotubes with high performance and excellent shape stability for energy storage [J].
Cao, Xianwu ;
Li, Chunnong ;
He, Guangjian ;
Tong, Yizhang ;
Yang, Zhitao .
JOURNAL OF ENERGY STORAGE, 2021, 44
[6]   Modelling of exfoliated graphite [J].
Celzard, A ;
Marêché, JF ;
Furdin, G .
PROGRESS IN MATERIALS SCIENCE, 2005, 50 (01) :93-179
[7]  
Chen X., 2021, Energy Storage Mater., V42, P380
[8]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[9]   Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting [J].
Cottrill, Anton L. ;
Liu, Albert Tianxiang ;
Kunai, Yuichiro ;
Koman, Volodymyr B. ;
Kaplan, Amir ;
Mahajan, Sayalee G. ;
Liu, Pingwei ;
Toland, Aubrey R. ;
Strano, Michael S. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management [J].
Cui, Ying ;
Qin, Zihao ;
Wu, Huan ;
Li, Man ;
Hu, Yongjie .
NATURE COMMUNICATIONS, 2021, 12 (01)