Approximate Optimality Conditions for Nonsmooth Optimization Problems

被引:1
作者
Son, Ta Quang [1 ]
Bao, Hua Khac [2 ]
Kim, Do Sang [3 ]
机构
[1] Saigon Univ, Fac Math & Applicat, Hochiminh City, Vietnam
[2] Doan Thi Diem Secondary Sch, D3, Hochiminh City, Vietnam
[3] Pukyong Natl Univ, Dept Appl Math, Pusan 48513, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2024年 / 28卷 / 06期
基金
新加坡国家研究基金会;
关键词
epsilon-quasi solution; epsilon-quasi subdifferential; epsilon-quasi normal set; approximate optimal- ity condition; PROGRAMMING PROBLEM; EPSILON-OPTIMALITY; INFINITE NUMBER; SUBDIFFERENTIALS; DUALITY;
D O I
10.11650/tjm/240705
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research article, a concept of E.-quasi subdifferential for locally Lipschitz functions is proposed. Calculuses of scalar product rule and sum rule for E.-quasi subdifferentials are investigated. A notion of E.-quasi normal set is introduced and its properties are presented. Based on the obtained results, optimality conditions for E.-quasi solutions in Karush-Kuhn-Tucker type of some classes of nonsmooth optimization problems are established. Several illustrative examples are also given.
引用
收藏
页码:1245 / 1266
页数:22
相关论文
共 33 条
[1]   Sequential Lagrange multiplier condition for ε-optimal solution in convex programming [J].
Bai, Fusheng ;
Wu, Zhiyou ;
Zhu, Daoli .
OPTIMIZATION, 2008, 57 (05) :669-680
[2]  
Beldiman M, 2008, B MATH SOC SCI MATH, V51, P109
[3]  
Bustos M., 1994, Numerical Functional Analysis and Optimization, V15, P435
[4]   Approximate solutions of multiobjective optimization problems [J].
Chuong, Thai Doan ;
Kim, Do Sang .
POSITIVITY, 2016, 20 (01) :187-207
[5]  
CLARKE FH, 1983, OPTIMIZATION NONSMOO
[6]  
Dutta J., 2005, TOP, V13, P127, DOI DOI 10.1007/BF02578991
[7]  
Giorgi G., 2004, Mathematics of Optimization: Smooth and Nonsmooth Case
[8]   Generalized ε-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions [J].
Gutierrez, C. ;
Lopez, R. ;
Novo, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) :4331-4346
[9]   An ε-lagrange multiplier rule for a mathematical programming problem on banach spaces [J].
Hamel, A .
OPTIMIZATION, 2001, 49 (1-2) :137-149
[10]  
Hiriart-Urruty J, 1982, Convex Analysis and Optimization, P43