Explainable Deep Reinforcement Learning for Multi-Agent Electricity Market Simulations

被引:1
|
作者
Miskiw, Kim K. [1 ]
Staudt, Philipp [2 ]
机构
[1] Karlsruhe Inst Technol, Informat & Market Engn, Karlsruhe, Germany
[2] Carl von Ossietzky Univ Oldenburg, Environm & Sustainable Informat Syst, Oldenburg, Germany
来源
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024 | 2024年
关键词
Agent-based simulation; electricity markets; multi-agent deep reinforcement learning; explainable reinforcement learning;
D O I
10.1109/EEM60825.2024.10608907
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As electricity systems evolve in the light of increased volatility and market variety, understanding market dynamics through simulations becomes crucial. Deep reinforcement learning (DRL) in combination with agent-based models (ABM) progressively garners attention as it allows the modeling of strategic bidding behavior of electricity market participants. However, as DRL is a black-box model, the learned behavior of market participants is hardly explainable nor interpretable for modelers. We bridge the gap in explainability of DRL in agent-based electricity market simulations by leveraging explainable DRL methods. The reviewed literature underscores the novelty of this approach, especially in multi-agent DRL settings. A case study comparing DRL and rule-based bidding strategies within the German electricity market showcases our method's potential. By analyzing DRL bidding strategies of 118 competitive DRL agents with clustering approaches and DeepSHAP, we investigate the underlying factors driving agent decisions, contributing to the development of transparent ABMs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Multi-Agent Deep Reinforcement Learning for Uplink Power Control in Multi-Cell Systems
    Jia, Ruibao
    Liu, Liu
    Zheng, Xufei
    Yang, Yuhan
    Wang, Shaoyang
    Huang, Pingmu
    Lv, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 324 - 330
  • [42] Multi-NPDQ: A Multi-agent Approach Through Deep Reinforcement Learning for Operation Scheduling
    Yao, Linwei
    Chen, Qichao
    Gong, Lianghao
    Li, Kuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14863 : 467 - 479
  • [43] Negotiation protocols for electricity spot market multi-agent simulation
    Praça, I
    Ramos, C
    Vale, Z
    Cordeiro, M
    MODELLING AND SIMULATION 2005, 2005, : 295 - 299
  • [44] STABILIZING MULTI-AGENT DEEP REINFORCEMENT LEARNING BY IMPLICITLY ESTIMATING OTHER AGENTS' BEHAVIORS
    Jin, Yue
    Wei, Shuangqing
    Yuan, Jian
    Zhang, Xudong
    Wang, Chao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3547 - 3551
  • [45] Reward-Guided Individualised Communication for Deep Reinforcement Learning in Multi-Agent Systems
    Lin, Yi-Yu
    Zeng, Xiao-Jun
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 79 - 94
  • [46] Multi-agent deep reinforcement learning with enhanced collaboration for distribution network voltage control
    Huang, Jiapeng
    Zhang, Huifeng
    Tian, Ding
    Zhang, Zhen
    Yu, Chengqian
    Hancke, Gerhard P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [47] MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR DISTRIBUTED HANDOVER MANAGEMENT IN DENSE MMWAVE NETWORKS
    Sana, Mohamed
    De Domenico, Antonio
    Strinati, Emilio Calvanese
    Clemente, Antonio
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8976 - 8980
  • [48] Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems
    Xiong, Jianyu
    Guo, Peng
    Wang, Yi
    Meng, Xiangyin
    Zhang, Jian
    Qian, Linmao
    Yu, Zhenglin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [49] Multi-agent deep reinforcement learning for Smart building energy management with chance constraints
    Deng, Jingchuan
    Wang, Xinsheng
    Meng, Fangang
    ENERGY AND BUILDINGS, 2025, 331
  • [50] Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid
    Park, Keonwoo
    Moon, Ilkyeong
    APPLIED ENERGY, 2022, 328