Monitoring Breast Cancer Response to Neoadjuvant Chemotherapy Using Probability Maps Derived from Quantitative Ultrasound Parametric Images

被引:1
作者
Karwat, Piotr [1 ]
Piotrzkowska-Wroblewska, Hanna [1 ]
Klimonda, Ziemowit [1 ]
Dobruch-Sobczak, Katarzyna S. [1 ,2 ]
Litniewski, Jerzy [1 ]
机构
[1] Polish Acad Sci, Inst Fundamental Technol Res, Ultrasound Dept, PL-02106 Warsaw, Poland
[2] Maria Sklodowska Curie Natl Res Inst Oncol, Radiol Dept 2, Warsaw, Poland
关键词
Tumors; Ultrasonic imaging; Chemotherapy; Monitoring; Breast cancer; Medical treatment; Breast tumors; neoadjuvant chemotherapy; quantitative ultrasound; treatment monitoring;
D O I
10.1109/TBME.2024.3383920
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Neoadjuvant chemotherapy (NAC) is widely used in the treatment of breast cancer. However, to date, there are no fully reliable, non-invasive methods for monitoring NAC. In this article, we propose a new method for classifying NAC-responsive and unresponsive tumors using quantitative ultrasound. Methods: The study used ultrasound data collected from breast tumors treated with NAC. The proposed method is based on the hypothesis that areas that characterize the effect of therapy particularly well can be found. For this purpose, parametric images of texture features calculated from tumor images were converted into NAC response probability maps, and areas with a probability above 0.5 were used for classification. Results: The results obtained after the third cycle of NAC show that the classification of tumors using the traditional method (area under the ROC curve AUC = 0.81-0.88) can be significantly improved thanks to the proposed new approach (AUC = 0.84-0.94). This improvement is achieved over a wide range of cutoff values (0.2-0.7), and the probability maps obtained from different quantitative parameters correlate well. Conclusion: The results suggest that there are tumor areas that are particularly well suited to assessing response to NAC. Significance: The proposed approach to monitoring the effects of NAC not only leads to a better classification of responses, but also may contribute to a better understanding of the microstructure of neoplastic tumors observed in an ultrasound examination.
引用
收藏
页码:2620 / 2629
页数:10
相关论文
共 37 条
[1]   Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J].
Alberro, J. A. ;
Ballester, B. ;
Deulofeu, P. ;
Fabregas, R. ;
Fraile, M. ;
Gubern, J. M. ;
Janer, J. ;
Moral, A. ;
de Pablo, J. L. ;
Penalva, G. ;
Puig, P. ;
Ramos, M. ;
Rojo, R. ;
Santesteban, P. ;
Serra, C. ;
Sola, M. ;
Solarnau, L. ;
Solsona, J. ;
Veloso, E. ;
Vidal, S. ;
Abe, O. ;
Abe, R. ;
Enomoto, K. ;
Kikuchi, K. ;
Koyama, H. ;
Masuda, H. ;
Nomura, Y. ;
Ohashi, Y. ;
Sakai, K. ;
Sugimachi, K. ;
Toi, M. ;
Tominaga, T. ;
Uchino, J. ;
Yoshida, M. ;
Coles, C. E. ;
Haybittle, J. L. ;
Moebus, V. ;
Leonard, C. F. ;
Calais, G. ;
Garaud, P. ;
Collett, V. ;
Davies, C. ;
Delmestri, A. ;
Sayer, J. ;
Harvey, V. J. ;
Holdaway, I. M. ;
Kay, R. G. ;
Mason, B. H. ;
Forbe, J. F. ;
Franci, P. A. .
LANCET ONCOLOGY, 2018, 19 (01) :27-39
[2]   Spheroids of HER2-Positive Breast Adenocarcinoma for Studying Anticancer Immunotoxins In Vitro [J].
Balalaeva, I. V. ;
Sokolova, E. A. ;
Puzhikhina, A. D. ;
Brilkina, A. A. ;
Deyev, S. M. .
ACTA NATURAE, 2017, 9 (01) :38-43
[3]   Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer [J].
Bhardwaj, Divya ;
Dasgupta, Archya ;
DiCenzo, Daniel ;
Brade, Stephen ;
Fatima, Kashuf ;
Quiaoit, Karina ;
Trudeau, Maureen ;
Gandhi, Sonal ;
Eisen, Andrea ;
Wright, Frances ;
Look-Hong, Nicole ;
Curpen, Belinda ;
Sannachi, Lakshmanan ;
Czarnota, Gregory J. .
CANCERS, 2022, 14 (05)
[4]   Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis [J].
Chang, RF ;
Wu, WJ ;
Moon, WK ;
Chen, DR .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (05) :679-686
[5]  
Dasgupta Archya, 2020, Oncotarget, V11, P3782, DOI [10.18632/oncotarget.27742, 10.18632/oncotarget.27742]
[6]   Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness [J].
Denisov, Evgeny V. ;
Skryabin, Nikolay A. ;
Gerashchenko, Tatiana S. ;
Tashireva, Lubov A. ;
Wilhelm, Jochen ;
Buldakov, Mikhail A. ;
Sleptcov, Aleksei A. ;
Lebedev, Igor N. ;
Vtorushin, Sergey V. ;
Zavyalova, Marina V. ;
Cherdyntseva, Nadezhda V. ;
Perelmuter, Vladimir M. .
ONCOTARGET, 2017, 8 (37) :61163-61180
[7]   Quantitative Assessment of the Echogenicity of a Breast Tumor Predicts the Response to Neoadjuvant Chemotherapy [J].
Dobruch-Sobczak, Katarzyna Sylwia ;
Piotrzkowska-Wroblewska, Hanna ;
Karwat, Piotr ;
Klimonda, Ziemowit ;
Markiewicz-Grodzicka, Ewa ;
Litniewski, Jerzy .
CANCERS, 2021, 13 (14)
[8]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[9]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[10]   Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound [J].
Gomez, W. ;
Pereira, W. C. A. ;
Infantosi, A. F. C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (10) :1889-1899