Deep Hashing for Malware Family Classification and New Malware Identification

被引:2
|
作者
Zhang, Yunchun [1 ]
Liao, Zikun [1 ]
Zhang, Ning [1 ]
Min, Shaohui [1 ]
Wang, Qi [1 ]
Quek, Tony Q. S. [2 ]
Zhao, Mingxiong [1 ]
机构
[1] Yunnan Univ, Engn Res Ctr Cyberspace, Natl Pilot Sch Software, Kunming 650500, Peoples R China
[2] Singapore Univ Technol & Design, Informat Syst Technol & Design, Singapore 487372, Singapore
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 16期
基金
中国国家自然科学基金;
关键词
Malware; Feature extraction; Image retrieval; Image classification; Artificial neural networks; Internet of Things; Semantics; Deep hashing; deep neural networks (DNNs); image retrieval; malware classification; malware images; SEMANTICS; NETWORK;
D O I
10.1109/JIOT.2024.3353250
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although numerous state-of-the-art deep neural networks have recently been proposed for malware classification, effectively detecting malware on a large-scale sample set and identifying zero-day or new malware variants still pose significant challenges. To address this issue, a deep hashing-based malware classification model is designed for malware identification, including two parts: 1) ResNet50-based deep hashing for malware retrieval and 2) voting-based malware classification. Specifically, multiple deep hashing models are developed by extracting the high-layer outputs (feature maps) from the ResNet50 trained with malware gray-scale images in the first part. In this case, to maximize the Hamming distance or dissimilarity among hash values computed with malware samples under different families, a ResNet50-based deep polarized network (RNDPN) is designed to return Top K similar samples. In the second part, we propose a majority-voting and a Hamming-distance-based voting for malware identification according to the retrieved results. The experiment results show that RNDPN outperforms the other six deep hashing models with 97.54% mean average precision (mAP) for malware retrieval when only 40 similar examples are retrieved, where the best results for all deep hashing models are observed with 48-bits hashing code length. Furthermore, the Hamming distance-based voting method implemented with RNDPN demonstrates unparalleled performance in malware classification compared to other models. Notably, it achieves exceptional results in two key aspects: 1) malware classification accuracy with an impressive accuracy rate of 96.5% and 2) the identification of new or zero-day malware with a commendable accuracy of 85.7%.
引用
收藏
页码:26837 / 26851
页数:15
相关论文
共 50 条
  • [1] A New Malware Classification Framework Based on Deep Learning Algorithms
    Aslan, Omer
    Yilmaz, Abdullah Asim
    IEEE ACCESS, 2021, 9 : 87936 - 87951
  • [2] A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and Family Attribution
    Dib, Mirabelle
    Torabi, Sadegh
    Bou-Harb, Elias
    Assi, Chadi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1165 - 1177
  • [3] Automatic malware classification and new malware detection using machine learning
    Liu Liu
    Bao-sheng Wang
    Bo Yu
    Qiu-xi Zhong
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1336 - 1347
  • [4] Automatic malware classification and new malware detection using machine learning
    Liu, Liu
    Wang, Bao-sheng
    Yu, Bo
    Zhong, Qiu-xi
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (09) : 1336 - 1347
  • [5] Android Malware Classification Based on Fuzzy Hashing Visualization
    Rodriguez-Bazan, Horacio
    Sidorov, Grigori
    Escamilla-Ambrosio, Ponciano Jorge
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1826 - 1847
  • [6] Texture-Based Malware Family Classification
    Kumar, Nitish
    Meenpal, Toshanlal
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [7] A New Malware Classification Approach Based on Malware Dynamic Analysis
    Fang, Ying
    Yu, Bo
    Tang, Yong
    Liu, Liu
    Lu, Zexin
    Wang, Yi
    Yang, Qiang
    INFORMATION SECURITY AND PRIVACY, ACISP 2017, PT II, 2017, 10343 : 173 - 189
  • [8] Malware-on-the-Brain: Illuminating Malware Byte Codes With Images for Malware Classification
    Zhong, Fangtian
    Chen, Zekai
    Xu, Minghui
    Zhang, Guoming
    Yu, Dongxiao
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (02) : 438 - 451
  • [9] A Deep Learning Framework for Malware Classification
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil
    Wang, Yang
    Iqbal, Farkhund
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2020, 12 (01) : 90 - 108
  • [10] DATA AUGMENTATION IN TRAINING DEEP LEARNING MODELS FOR MALWARE FAMILY CLASSIFICATION
    Ding Yuxin
    Wang Guangbin
    Ma Yubin
    Ding Haoxuan
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 102 - 107