Double Perovskites Materials Based Magnetic Tunnel Junction Devices for MRAM Applications

被引:0
作者
Kumari, Seema [1 ]
Yadav, Rekha [1 ]
机构
[1] DCRUST Murthal, Dept ECE, Murthal, Haryana, India
关键词
spintronics; MTJ; 2D materials; tunnel magnetoresistance; DTMR; 1ST-PRINCIPLES;
D O I
10.3103/S875669902470050X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how double perovskites affect the operation of magnetic tunnel junction (MTJ) memory devices. Spin-polarized MTJs may provide a viable alternative to charge-based storage devices. The proposed MTJ memory device uses Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, and Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document} for the dielectric layer. A composite dielectric layer (CDL) formed by MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO is presented in this paper and compared. The CDL has introduced ferromagnetic layers between CoFeB and Fe in a penta-layer MTJ device. MTJ devices with Fe-CDL-Fe and CoFeB-CDL-CoFeB have higher switching currents and TMR ratios than those with Fe-MgO-Fe. The antiparallel resistance, parallel resistance, spin transfer torque (STT), tunnel magnetoresistance (TMR), and differential TMR of the proposed MTJ are calculated using a nonequilibrium Green's function simulator. The power consumption of Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe based MTJ devices is 14.25 nW. The Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe showed the highest TMR ratio (1137\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) among all the MTJ models studied.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [41] Half-metallic Heusler alloy/AlP based magnetic tunnel junction
    Qu, Kaifang
    Xie, Qiyun
    Wang, Wei
    AIP ADVANCES, 2024, 14 (05)
  • [42] Experimental investigations of SiO2 based ferrite magnetic tunnel junction
    Ravi, S.
    Karthikeyan, A.
    Aravindan, V.
    Pugazhvadivu, K. S.
    Tamilarasan, K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013, 178 (15): : 937 - 941
  • [43] Magneto-Electric Magnetic Tunnel Junction Based Analog Circuit Options
    Sharma, Nishtha
    Bird, Jonathan
    Dowben, Peter
    Marshall, Andrew
    2017 30TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2017, : 179 - 183
  • [44] Overview of magnetic skyrmion-based devices and applications
    Xia Jing
    Han Zong-Yi
    Song Yi-Fan
    Jiang Wen-Jing
    Lin Liu-Rong
    Zhang Xi-Chao
    Liu Xiao-Xi
    Zhou Yan
    ACTA PHYSICA SINICA, 2018, 67 (13)
  • [45] Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer
    Fan, Xin
    Chen, Yunpeng
    Bi, Chong
    Xie, Yunsong
    Kolodzey, James
    Wilson, Jeffrey D.
    Simons, Rainee N.
    Zhang, Huaiwu
    Xiao, John Q.
    2014 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2014,
  • [46] Magneto-Electric Magnetic Tunnel Junction as Process Adder for Non-Volatile Memory Applications
    Sharma, Nishtha
    Marshall, Andrew
    Bird, Jonathan
    Dowben, Peter
    2015 IEEE DALLAS CIRCUITS AND SYSTEMS CONFERENCE (DCAS), 2015,
  • [47] Spin-orbit torque magnetic tunnel junction based on 2-D materials: Impact of bias-layer on device performance
    Shashidhara, M.
    Srivastava, Shobhit
    Panwar, Sourabh
    Acharya, Abhishek
    SOLID-STATE ELECTRONICS, 2023, 208
  • [48] Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction
    Moriya, R
    Hamaya, K
    Oiwa, A
    Munekata, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (6B): : L825 - L827
  • [49] Half-Metallic Heusler Alloy/MoS2 Based Magnetic Tunnel Junction
    Larionov, Konstantin V.
    Pereda, Jose J. Pais
    Li, Songtian
    Sakai, Seiji
    Sorokin, Pavel B.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (49) : 55167 - 55173
  • [50] Self-Resetting Magnetic Tunnel Junction Neuron-based Spiking Neural Networks
    Lone, Aijaz H.
    Rahimi, Daniel N.
    Fariborzi, Hossein
    Setti, Gianluca
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 119 - 123