Double Perovskites Materials Based Magnetic Tunnel Junction Devices for MRAM Applications

被引:0
作者
Kumari, Seema [1 ]
Yadav, Rekha [1 ]
机构
[1] DCRUST Murthal, Dept ECE, Murthal, Haryana, India
关键词
spintronics; MTJ; 2D materials; tunnel magnetoresistance; DTMR; 1ST-PRINCIPLES;
D O I
10.3103/S875669902470050X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows how double perovskites affect the operation of magnetic tunnel junction (MTJ) memory devices. Spin-polarized MTJs may provide a viable alternative to charge-based storage devices. The proposed MTJ memory device uses Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}, and Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document} for the dielectric layer. A composite dielectric layer (CDL) formed by MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}/Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}CuBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO is presented in this paper and compared. The CDL has introduced ferromagnetic layers between CoFeB and Fe in a penta-layer MTJ device. MTJ devices with Fe-CDL-Fe and CoFeB-CDL-CoFeB have higher switching currents and TMR ratios than those with Fe-MgO-Fe. The antiparallel resistance, parallel resistance, spin transfer torque (STT), tunnel magnetoresistance (TMR), and differential TMR of the proposed MTJ are calculated using a nonequilibrium Green's function simulator. The power consumption of Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe based MTJ devices is 14.25 nW. The Fe-MgO-Cs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{2}$$\end{document}AgBiBr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}-MgO-Fe showed the highest TMR ratio (1137\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) among all the MTJ models studied.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 50 条
  • [31] Markov Chain Signal Generation Based on Single Magnetic Tunnel Junction
    Yuan, Xihui
    Jian, Jiajia
    Chai, Zheng
    An, Suihuan
    Gao, Yawei
    Zhou, Xue
    Zhang, Jian Fu
    Zhang, Weidong
    Min, Tai
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (12) : 1963 - 1966
  • [32] Design and Performance Evaluation of Magnetic Tunnel Junction Based Logic Circuits
    Nisar, Arshid
    Khanday, Farooq A.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 361 - 365
  • [33] Perpendicularly Magnetized MnxGa-Based Magnetic Tunnel Junctions: Materials, Mechanisms, Performances, and Potential Applications
    Zhao, Xupeng
    Zhao, Jianhua
    ADVANCED MATERIALS INTERFACES, 2022, 9 (36)
  • [34] A fully integrated 1 kb magnetoresistive random access memory with a double magnetic tunnel junction
    Ikegawa, S
    Asao, Y
    Saito, Y
    Takahashi, S
    Kai, T
    Tsuchida, K
    Yoda, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (7A): : L745 - L747
  • [35] The electrical and magnetic response of yoke-type read heads based on a magnetic tunnel junction
    Coehoorn, R
    Cumpson, SR
    Ruigrok, JJM
    Hidding, P
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 2586 - 2588
  • [36] Microstructure Processing and Micromagnetic Simulations of Magnetic Tunnel Junction based Low Power Magnetic Memories
    Chakraverty, Mayank
    Kittur, Harish M.
    2014 ANNUAL INTERNATIONAL CONFERENCE ON EMERGING RESEARCH AREAS: MAGNETICS, MACHINES AND DRIVES (AICERA/ICMMD), 2014,
  • [37] Thermally Induced Perpendicular Magnetic Anisotropy in CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction
    Kulkarni, Prabhanjan D.
    Khan, Jakeer
    Predeep, P.
    Chowdhury, P.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [38] A brief review on the spin valve magnetic tunnel junction composed of 2D materials
    Elahi, Ehsan
    Dastgeer, Ghulam
    Sharma, Pradeep Raj
    Nisar, Sobia
    Suleman, Muhammad
    Iqbal, Muhammad Waqas
    Imran, Muhammad
    Aslam, Muhammad
    Imran, Ali
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (42)
  • [39] Patterning challenges for beyond 3nm logic devices: Example of an Interconnected Magnetic Tunnel Junction
    Thiam, N. A.
    Wan, D.
    Souriau, L.
    Gavan, K. Babaei
    Rassoul, N.
    Swerts, J.
    Couet, S.
    Raymenants, E.
    Jussot, J.
    Trivkovic, D.
    Ercken, M.
    Wilson, C. J.
    Radu, I. P.
    NOVEL PATTERNING TECHNOLOGIES FOR SEMICONDUCTORS, MEMS/NEMS, AND MOEMS 2019, 2019, 10958
  • [40] Spin transport properties of magnetic tunnel junction based on zinc blende CrS
    Qiu, Minzheng
    Ye, Shizuo
    Wang, Wei
    He, Jin
    Chang, Sheng
    Wang, Hao
    Huang, Qijun
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 133