Quantum Generative Adversarial Networks in a Silicon Photonic Chip with Maximum Expressibility

被引:1
作者
Ma, Haoran [1 ]
Ye, Liao [1 ]
Guo, Xiaoqing [1 ]
Ruan, Fanjie [1 ]
Zhao, Zichao [1 ]
Li, Maohui [1 ]
Wang, Yuehai [1 ]
Yang, Jianyi [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum generative adversarial network; quantum machine learning; silicon photonic;
D O I
10.1002/qute.202400171
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generative adversarial networks (GANs) have achieved remarkable success with realistic tasks such as creating realistic images, texts, and audio. Combining GANs and quantum computing, quantum GANs are thought to have an exponential advantage over their classical counterparts due to the stronger expressibility of quantum circuits. In this research, a two-qubit silicon quantum photonic chip is created, capable of executing arbitrary controlled-unitary (CU$C\hat{U}$) operations and generating any two-qubit pure state, thus making it an excellent platform for quantum GANs. To capture complex data patterns, a hybrid generator is proposed to inject nonlinearity into quantum GANs. As a demonstration, three generative tasks, covering both pure quantum versions of GANs (PQ-GANs) and hybrid quantum-classical GANs (HQC-GANs), are successfully carried out on the chip, including high-fidelity single-qubit state learning, classical distributions loading, and compressed image production. The experiment results prove that silicon quantum photonic chips have great potential in generative learning applications. Quantum generative adversarial networks (GANs) may offer exponential advantages over classical versions due to their stronger circuit expressibility. This work introduces a two-photon generator with maximum expressibility, utilizing a two-qubit silicon photonic chip for three generative tasks, covering pure quantum GANs and hybrid quantum-classical GANs. Experiment results demonstrate the potential of silicon photonic chips in generative learning applications. image
引用
收藏
页数:10
相关论文
共 58 条
[1]  
Arjovsky M., 2017, arXiv, DOI 10.48550/arXiv.1701.04862
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   Adversarial quantum circuit learning for pure state approximation [J].
Benedetti, Marcello ;
Grant, Edward ;
Wossnig, Leonard ;
Severini, Simone .
NEW JOURNAL OF PHYSICS, 2019, 21 (04)
[4]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]   How to enhance quantum generative adversarial learning of noisy information [J].
Braccia, Paolo ;
Caruso, Filippo ;
Banchi, Leonardo .
NEW JOURNAL OF PHYSICS, 2021, 23 (05)
[7]   A programmable qudit-based quantum processor [J].
Chi, Yulin ;
Huang, Jieshan ;
Zhang, Zhanchuan ;
Mao, Jun ;
Zhou, Zinan ;
Chen, Xiaojiong ;
Zhai, Chonghao ;
Bao, Jueming ;
Dai, Tianxiang ;
Yuan, Huihong ;
Zhang, Ming ;
Dai, Daoxin ;
Tang, Bo ;
Yang, Yan ;
Li, Zhihua ;
Ding, Yunhong ;
Oxenlowe, Leif K. ;
Thompson, Mark G. ;
O'Brien, Jeremy L. ;
Li, Yan ;
Gong, Qihuang ;
Wang, Jianwei .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[9]   Quantum generative adversarial networks [J].
Dallaire-Demers, Pierre-Luc ;
Killoran, Nathan .
PHYSICAL REVIEW A, 2018, 98 (01)
[10]   High-fidelity parallel entangling gates on a neutral-atom quantum computer [J].
Evered, Simon J. ;
Bluvstein, Dolev ;
Kalinowski, Marcin ;
Ebadi, Sepehr ;
Manovitz, Tom ;
Zhou, Hengyun ;
Li, Sophie H. ;
Geim, Alexandra A. ;
Wang, Tout T. ;
Maskara, Nishad ;
Levine, Harry ;
Semeghini, Giulia ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2023, 622 (7982) :268-272