Recycling Silicon Cutting Waste from Photovoltaic Industry into High-Performance Anodes for Lithium-Ion Batteries

被引:2
|
作者
Zhang, Chuanlong [1 ]
Li, Jianjiang [1 ]
Feng, Yuanyong [2 ]
Du, Guanhua [1 ]
Liu, Yuxiao [1 ]
Wang, Ying [3 ]
Wang, Yun [4 ]
Wu, Zhenzhen [4 ]
Yang, Pan [4 ]
Nanjundan, Ashok Kumar [6 ]
Yang, Kerong [5 ]
Zhu, Xiaoyi [1 ]
Zhang, Lei [4 ]
机构
[1] Qingdao Univ, Sch Environm Sci & Engn, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Affiliated Hosp, Dept Oral & Maxillofacial Surg, Qingdao 266003, Shandong, Peoples R China
[3] Jiangsu Normal Univ, Sch Chem & Mat Sci, Xuzhou 221116, Jiangsu, Peoples R China
[4] Griffith Univ, Ctr Catalysis & Clean Energy, Gold Coast Campus, Southport, Qld 4222, Australia
[5] Qingdao Inst Text Fiber Supervis & Inspect, Qingdao 266061, Shandong, Peoples R China
[6] Univ Southern Queensland, Ctr Future Mat, Sch Engn, Springfield, Qld 4300, Australia
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年 / 12卷 / 37期
基金
澳大利亚研究理事会;
关键词
anode materials; photovoltaic silicon waste; waste recycling; electrostatic spinning; lithium-ionbatteries; ELECTROCHEMICAL IMPEDANCE; COMPOSITE; GRAPHENE; NANOFIBERS;
D O I
10.1021/acssuschemeng.4c05566
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photovoltaic (PV) industry annually generates substantial quantities of silicon cutting waste (SCW), posing significant environmental pressure and leading to considerable resource wastage. To address this issue and capitalize on wasted high-purity silicon, a novel, highly dispersed Si-based composite from SCW was developed for use as a high-performance anode in lithium-ion batteries. This study presents a novel approach for the fabrication of a composite material comprising SCW-derived silicon nanoparticles (SiNPs) and carbon nanotubes (CNTs) embedded within a carbon nanofiber (CNFs) network (Si/CNTs@CNFs). SCW was subjected to acid washing, high-temperature pyrolysis, and ball milling to produce nanoscale SiNPs. These SiNPs were then mixed with CNTs to produce Si/CNTs@CNFs via a modified electrospinning process, in which poly(vinylpyrrolidone) (PVP) was used as a stabilizing agent to prevent the agglomeration of SiNPs. This ensured that both SiNPs and CNTs were uniformly dispersed throughout the interconnected CNFs, leading to enhanced electrical conductivity, improved structural stability, and better electrochemical performance for this Si-based anode. The highly dispersed Si/CNTs@CNFs composite material exhibits a reversible capacity of 571.5 mAh g(-1) after 200 cycles at a current density of 1 A g(-1), showcasing superior electrical performance compared to samples without PVP or without ball milling. This study presents a novel pathway for recycling silicon cutting waste from the solar PV industry, thereby contributing to sustainability and the advancement of renewable energy resources.
引用
收藏
页码:14099 / 14108
页数:10
相关论文
共 50 条
  • [31] High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation
    Gao, Yao
    Fan, Lei
    Zhou, Rui
    Du, Xiaoqiong
    Jiao, Zengbao
    Zhang, Biao
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [32] Three-Dimensional Porous Carbon-Silicon Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Wang, Ming-Shan
    Song, Yu
    Song, Wei-Li
    Fan, Li-Zhen
    CHEMELECTROCHEM, 2014, 1 (12): : 2124 - 2130
  • [33] Recycling disposable masks as a conductive additive for silicon/graphite anodes in lithium-ion batteries
    Min, Gyudong
    Yun, Hyeongju
    Kim, Minjae
    CARBON LETTERS, 2024, 34 (01) : 303 - 313
  • [34] Hierarchical Phosphide-Based Hybrid Anodes for High-Performance Lithium-Ion Batteries
    Xiao, Shanshan
    Chen, Yong
    Zhou, Xianggang
    Sun, Hechen
    Wan, Wubin
    Li, Yingqi
    Yao, Ruiqi
    Bi, Fei
    Zhao, Li
    Wang, Liyan
    Lang, Xing-You
    Jiang, Qing
    NANO LETTERS, 2025, 25 (09) : 3532 - 3540
  • [35] Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Zeng, Wenwu
    Wang, Lei
    Peng, Xiang
    Liu, Tiefeng
    Jiang, Youyu
    Qin, Fei
    Hu, Lin
    Chu, Paul K.
    Huo, Kaifu
    Zhou, Yinhua
    ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [36] High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries
    Ma, Lei
    Fu, Xiaomeng
    Zhao, Fangfang
    Su, Wenda
    Yu, Liming
    Lu, Cheng
    Wei, Liangming
    Tang, Gen
    Wang, Yue
    Guo, Xiang
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (03) : 1714 - 1722
  • [37] In situ synthesis of carbon doped porous silicon nanocomposites as high-performance anodes for lithium-ion batteries
    Chen, Yifan
    Bao, Liang
    Du, Ning
    Yang, Tao
    Mao, Qinan
    Lu, Xiaoxiao
    Lin, Yangfan
    Ji, Zhenguo
    NANOTECHNOLOGY, 2019, 30 (03)
  • [38] Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries
    An, Weili
    He, Peng
    Xiao, Chengmao
    Guo, Eming
    Pang, Chunlei
    He, Xueqin
    Ren, Jianguo
    Yuan, Guohui
    Du, Ning
    Yang, Deren
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4976 - 4985
  • [39] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    Rare Metals, 2024, 43 : 2161 - 2171
  • [40] A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries
    Hu, Shanming
    Wang, Leidanyang
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2020, 449 (449)