Spatial Reconstruction Based on Spectral Metric for Hyperspectral Image Classification

被引:0
作者
Fang, Jie [1 ]
Zhong, Yulu [1 ]
Cao, Xiaoqian [2 ]
Wang, Dianwei [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710116, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Vectors; Measurement; Mathematical models; Hyperspectral imaging; Convolutional neural networks; Convolution; Hyperspectral image (HSI) classification; soft band selection; spatial reconstruction; spectral metric; NETWORK;
D O I
10.1109/LGRS.2024.3454216
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a hyperspectral image (HSI) classification method based on spatial reconstruction to alleviate the influences of view changes to HSI encoding, and it mainly contains a spatial reconstruction mechanism, a feature representation network (FRN), and an auxiliary branch. The spatial reconstruction mechanism based on spectral metric unifies image patches with the same entities and different neighbor distributions to an identical cube, while the FRN based on soft band selection adaptively emphasizes informative spectral bands and suppresses redundant ones in the coding phase, and these two modules can form spatial distribution-insensitive data space and noise-robust discriminative feature vector and further improve the classification performance. Besides, the auxiliary branch based on the decoupling strategy ensures the latent relationships among neighbor pixels of the original patch, and it also highlights the relative importance of the center pixel. In addition, the experimental results on three public datasets demonstrate the superiority of the proposed method.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[2]   The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice [J].
Derosa, Giuseppe ;
Sahebkar, Amirhossein ;
Maffioli, Pamela .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (01) :153-161
[3]  
Gao L., 2021, IEEE Transactions on Geoscience and Remote Sensing, DOI [DOI 10.1109/TGRS.2021.3130716, 10.1109/TGRS.2021.3130716]
[4]   Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4085-4098
[5]   Hyperspectral Image Classification Using Group-Aware Hierarchical Transformer [J].
Mei, Shaohui ;
Song, Chao ;
Ma, Mingyang ;
Xu, Fulin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790
[7]   Improving Wishart Classification of Polarimetric SAR Data Using the Hopfield Neural Network Optimization Approach [J].
Pajares, Gonzalo ;
Lopez-Martinez, Carlos ;
Javier Sanchez-Llado, F. ;
Molina, Inigo .
REMOTE SENSING, 2012, 4 (11) :3571-3595
[8]   HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Krishna, Gopal ;
Dubey, Shiv Ram ;
Chaudhuri, Bidyut B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) :277-281
[9]   Supervised classification of remotely sensed imagery using a modified k-NN technique [J].
Samaniego, Luis ;
Bardossy, Andras ;
Schulz, Karsten .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07) :2112-2125
[10]   Spectral-Spatial Attention Rotation-Invariant Classification Network for Airborne Hyperspectral Images [J].
Shi, Yuetian ;
Fu, Bin ;
Wang, Nan ;
Cheng, Yinzhu ;
Fang, Jie ;
Liu, Xuebin ;
Zhang, Geng .
DRONES, 2023, 7 (04)