A numerical method for the Hirota equation in a dispersive optical media

被引:1
|
作者
Hontinfinde, Regis Donald [1 ,2 ]
Ayela, Marc Amour [3 ,4 ]
Edah, Gaston [3 ]
机构
[1] Natl Univ Sci Technol Engn & Math UNSTIM, Lab Sci Engn & Math LSIMA, Abomey, Benin
[2] Univ Abomey Calavi, Polytech Sch Abomey Calavi EPAC UAC, Photon & Digital Broadcasting Res Unit UR PHORAN, Abomey Calavi, Benin
[3] Univ Abomey Calavi, Fac Sci & Technol FAST, Abomey Calavi, Benin
[4] Univ Toulouse, Laplace, Toulouse INP, UPS, Toulouse, France
来源
JOURNAL OF OPTICS-INDIA | 2024年
关键词
Ultrashort pulse; Optical fiber propagation; Finite difference time-domain method; Periodic boundary conditions; CONCATENATION MODEL; SOLITONS; NONLINEARITY; BRIGHT;
D O I
10.1007/s12596-024-02100-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, the propagation of ultrashort optical pulses in the context of long-distance optical fiber communications is numerically investigated. The method used is the finite difference scheme in the third order time domain and periodic boundary conditions. As a result, the obtained discrete system of ordinary differential equations is solved numerically by the fourth-order Runge-Kutta algorithm. The proposed algorithm was tested on various input pulses. Precise results of temporal mappings are presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Highly dispersive optical soliton molecules to dual-mode nonlinear Schrodinger wave equation in cubic law media
    Kopcasiz, Bahadir
    Seadawy, Aly R.
    Yasar, Emrullah
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (03)
  • [32] A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media
    Baruch, G.
    Fibich, G.
    Tsynkov, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3789 - 3815
  • [33] Classification of optical wave solutions to the nonlinearly dispersive Schrodinger equation
    Yin, Jiuli
    Tian, Lixin
    Fan, Xinghua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) : 1224 - 1232
  • [34] Stability of elliptic solutions for the Hirota equation
    Yin, Zhe-Yong
    Tian, Shou-Fu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [35] Describing dynamics of nonlinear axisymmetric waves in dispersive media with new equation
    Arkhipov, Dmitry G.
    Khabakhpashev, Georgy A.
    Zakharov, Vladimir E.
    PHYSICS LETTERS A, 2015, 379 (22-23) : 1414 - 1417
  • [36] Dispersive optical solitons by Kudryashov's method
    Mirzazadeh, M.
    Eslami, M.
    Biswas, Anjan
    OPTIK, 2014, 125 (23): : 6874 - 6880
  • [37] Dispersive optical solitons with Schrodinger-Hirota model having multiplicative white noise via Ito Calculus
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    Biswas, Anjan
    Moraru, Luminita
    Khan, Salam
    Yildirim, Yakup
    Alshehri, Hashim M.
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2022, 445
  • [38] Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
    Grava, T.
    Klein, C.
    Pitton, G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [39] Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers
    Liu, Jian-Guo
    Osman, M. S.
    Zhu, Wen-Hui
    Zhou, Li
    Ai, Guo-Ping
    APPLIED PHYSICS B-LASERS AND OPTICS, 2019, 125 (09):
  • [40] Abundant optical solutions for the stochastic Schrodinger-Hirota equation in quantum mechanics, science and engineering
    Al-Askar, Farah M.
    MODERN PHYSICS LETTERS B, 2025, 39 (13):