Cellulose-based thermoelectric composites: A review on mechanism, strategies and applications

被引:2
|
作者
Cheng, Heli [1 ]
Wang, Zhenyu [1 ]
Guo, Zejiang [1 ]
Lou, Jiang [2 ]
Han, Wenjia [2 ]
Rao, Jun [3 ]
Peng, Feng [3 ,4 ]
机构
[1] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Wuhan 430068, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[3] Beijing Forestry Univ, MOE Engn Res Ctr Forestry Biomass Mat & Bioenergy, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
[4] State Key Lab Efficient Prod Forest Resources, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Thermoelectric composites; Paper/film; Hydrogel; Energy storage; Sensing; THERMO-ELECTROCHEMICAL CELLS; BISMUTH TELLURIDE; POWER-GENERATION; WASTE HEAT; PERFORMANCE; INSULATION; POLYMERS; AEROGELS;
D O I
10.1016/j.ijbiomac.2024.132908
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ever-increasing demand for energy and environmental concerns have driven scientists to look for renewable and eco-friendly alternatives. Bio-based thermoelectric (TE) composite materials provide a promising solution to alleviate the global energy crisis due to their direct conversion of heat to electricity. Cellulose, the most abundant bio-polymer on earth with fascinating structure and desirable physicochemical properties, provides an excellent alternative matrix for TE materials. Here, recent studies on cellulose-based TE composites are comprehensively summarized. The fundamentals of TE materials, including TE effects, TE devices, and evaluation on conversion efficiency of TE materials are briefly introduced at the beginning. Then, the state-of-the-art methods for constructing cellulose-based TE composites in the forms of paper/film, aerogel, liquid, and hydrogel, are highlighted. TE performances of these composites are also compared. Following that, applications of cellulose-based TE composites in the fields of energy storage (e.g., supercapacitors) and sensing (e.g., self-powered sensors) are presented. Finally, opportunities and challenges that need investigation toward further development of cellulosebased TE composites are discussed.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Cellulose-based myristic acid composites for thermal energy storage applications
    Konuklu, Yeliz
    Erzin, Fatma
    Akar, Hasan Burak
    Turan, Abdul Malik
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 193 : 85 - 91
  • [22] Cellulose-based films and membranes: A comprehensive review on preparation and applications
    Grzybek, Pawel
    Dudek, Gabriela
    van der Bruggen, Bart
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [23] Cellulose-based bionanocomposites in energy storage applications-A review
    Das, Atanu Kumar
    Islam, Md Nazrul
    Ghosh, Rupak Kumar
    Maryana, Roni
    HELIYON, 2023, 9 (01)
  • [24] Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review
    Liu, Wei
    Du, Haishun
    Zhang, Miaomiao
    Liu, Kun
    Liu, Huayu
    Xie, Hongxiang
    Zhang, Xinyu
    Si, Chuanling
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (20) : 7536 - 7562
  • [25] Cellulose-Based Intelligent Responsive Materials: A Review
    Chang, Sisi
    Weng, Zhangzhao
    Zhang, Chunmei
    Jiang, Shaohua
    Duan, Gaigai
    POLYMERS, 2023, 15 (19)
  • [26] Thermoelectric Materials and Applications: A Review
    d'Angelo, Matteo
    Galassi, Carmen
    Lecis, Nora
    ENERGIES, 2023, 16 (17)
  • [27] Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms - A review
    Sun, Zhe
    Ahmad, Mehraj
    Wang, Sha
    CARBOHYDRATE POLYMERS, 2022, 289
  • [28] Cellulose-based fluorescent materials for chemical sensing applications
    Liu, Yali
    Zu, Baiyi
    Dou, Xincun
    COORDINATION CHEMISTRY REVIEWS, 2025, 532
  • [29] Fabrication and applications of cellulose-based nanogenerators
    Meng Zhang
    Haishun Du
    Kun Liu
    Shuangxi Nie
    Ting Xu
    Xinyu Zhang
    Chuanling Si
    Advanced Composites and Hybrid Materials, 2021, 4 : 865 - 884
  • [30] Fabrication, Properties, and Biomedical Applications of Calcium-Containing Cellulose-Based Composites
    Shi, Ru-Jie
    Lang, Jia-Qi
    Wang, Tian
    Zhou, Nong
    Ma, Ming-Guo
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10