GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception

被引:0
作者
Liu, Yunxiang [1 ]
Ma, Haili [1 ]
Zhu, Jianlin [1 ]
Zhang, Qiangbo [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 02期
关键词
Autonomous driving; multitask learning; drivable area segmentation; lane detection; vehicle detection;
D O I
10.32604/cmc.2024.053710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles, we propose GDMNet, a unified multi-task perception network for autonomous driving, capable of performing drivable area segmentation, lane detection, and traffic object detection. Firstly, in the encoding stage, features are extracted, and Generalized Efficient Layer Aggregation Network (GELAN) is utilized to enhance feature extraction and gradient flow. Secondly, in the decoding stage, specialized detection heads are designed; the drivable area segmentation head employs DySample to expand feature maps, the lane detection head merges early-stage features and processes the output through the Focal Modulation Network (FMN). Lastly, the Minimum Point Distance IoU (MPDIoU) loss function is employed to compute the matching degree between traffic object detection boxes and predicted boxes, facilitating model training adjustments. Experimental results on the BDD100K dataset demonstrate that the proposed network achieves a drivable area segmentation mean intersection over union (mIoU) of 92.2%, lane detection accuracy and intersection over union (IoU) of 75.3% and 26.4%, respectively, and traffic object detection recall and mAP of 89.7% and 78.2%, respectively. The detection performance surpasses that of other single-task or multi-task algorithm models.
引用
收藏
页码:2963 / 2978
页数:16
相关论文
共 50 条
  • [31] UMT-Net: A Uniform Multi-Task Network With Adaptive Task Weighting
    Chen, Sihan
    Zheng, Lianqing
    Huang, Libo
    Bai, Jie
    Zhu, Xichan
    Ma, Zhixiong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2304 - 2317
  • [32] Multi-Task Metric Learning on Network Data
    Fang, Chen
    Rockmore, Daniel N.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 317 - 329
  • [33] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [34] LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving
    Mohapatra, Sambit
    Yogamani, Senthil
    Kumar, Varun Ravi
    Milz, Stefan
    Gotzig, Heinrich
    Maeder, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 1547 - 1561
  • [35] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [36] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [37] Multi-Task and Multi-Scene Unified Ranking Model for Online Advertising
    Tan, Shulong
    Li, Meifang
    Zhao, Weijie
    Zheng, Yandan
    Pei, Xin
    Li, Ping
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2046 - 2051
  • [38] DRMNet: A Multi-Task Detection Model Based on Image Processing for Autonomous Driving Scenarios
    Zhao, Jiandong
    Wu, Di
    Yu, Zhixin
    Gao, Ziyou
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 15341 - 15355
  • [39] Scalable Multi-Task Learning R-CNN for Object Detection in Autonomous Driving
    Rinchen, Sonam
    Vaidya, Binod
    Mouftah, Hussein T.
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 518 - 523
  • [40] Unified Transformer Multi-Task Learning for Intent Classification With Entity Recognition
    Benayas Alamos, Alberto Jose
    Hashempou, Reyhaneh
    Rumble, Damian
    Jameel, Shoaib
    De Amorim, Renato Cordeiro
    IEEE ACCESS, 2021, 9 : 147306 - 147314