Demonstration of an 8-Gbit/s quadrature-phase-shift-keying coherent underwater wireless optical communication link using coherent heterodyne detection under scattering conditions

被引:2
作者
Duan, Yuxiang [1 ]
Zhou, Huibin [1 ]
Jiang, Zile [1 ]
Ramakrishnan, Muralekrishnan [1 ]
Su, Xinzhou [1 ]
Ko, Wing [1 ]
Zuo, Yue [1 ]
Lian, Hongkun [1 ]
Zeng, Ruoyu [1 ]
Wang, Yingning [1 ]
Zhao, Zixun [1 ]
Tur, Moshe [2 ]
Willner, Alan e. [1 ,3 ]
机构
[1] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel
[3] Univ Southern Calif, Dornsife Dept Phys & Astron, Los Angeles, CA 90089 USA
关键词
LASER;
D O I
10.1364/OL.530047
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we experimentally demonstrate an 8-Gbit/s quadrature-phase-shift-keying (QPSK) coherent underwater wireless optical communication (UWOC) link under scattering conditions at 532 nm. At the transmitter, we generate the 532-nm QPSK signal using second-harmonic generation (SHG), where the 1064-nm signal modulated with four phase levels of an 8-phase-shift-keying (8-PSK) format is phase doubled to produce the 532-nm QPSK signal. To enhance the receiver sensitivity, we utilize a local oscillator (LO) at the receiver from an independent laser source. The received QPSK data beam is mixed with the independent LO for coherent heterodyne detection. Results show that the bit error rates (BERs) of the received QPSK signal can reach below the 7% forward error correction (FEC) limit under turbid water with attenuation lengths (gamma L) gamma L ) up to 7.4 and 6.1 for 2- and 8-Gbit/s QPSK, respectively. The corresponding receiver sensitivities are -34.0 and -28.4 dBm for 2- and 8-Gbit/s QPSK, respectively. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:4397 / 4400
页数:4
相关论文
共 34 条
[1]   Recent Trends in Underwater Visible Light Communication (UVLC) Systems [J].
Ali, Mohammad Furqan ;
Jayakody, Dushantha Nalin K. ;
Li, Yonghui .
IEEE ACCESS, 2022, 10 :22169-22225
[2]  
Boyd Robert W., 2023, Springer Handbook of Atomic, Molecular, and Optical Physics, P1097, DOI [10.1007/978-3-030-73893-8_76, DOI 10.1007/978-3-030-73893-8_76]
[3]   Dysfunction of dendritic cells in tumor microenvironment and immunotherapy [J].
Chen, Jie ;
Duan, Yuhang ;
Che, Junye ;
Zhu, Jianwei .
CANCER COMMUNICATIONS, 2024, 44 (09) :1047-1070
[4]   Underwater and Water-Air Optical Wireless Communication [J].
Chen, Lian-Kuan ;
Shao, Yingjie ;
Di, Yujie .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (05) :1440-1452
[5]   Temporal Response of the Underwater Optical Channel for High-Bandwidth Wireless Laser Communications [J].
Cochenour, Brandon ;
Mullen, Linda ;
Muth, John .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2013, 38 (04) :730-742
[6]   Effect of scattering albedo on attenuation and polarization of light underwater [J].
Cochenour, Brandon ;
Mullen, Linda ;
Muth, John .
OPTICS LETTERS, 2010, 35 (12) :2088-2090
[7]   Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths [J].
Corato-Zanarella, Mateus ;
Gil-Molina, Andres ;
Ji, Xingchen ;
Shin, Min Chul ;
Mohanty, Aseema ;
Lipson, Michal .
NATURE PHOTONICS, 2023, 17 (02) :157-+
[8]   100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT) [J].
Fei, Chao ;
Wang, Yuan ;
Du, Ji ;
Chen, Ruilin ;
Lv, Nanfei ;
Zhang, Guowu ;
Tian, Jiahan ;
Hong, Xiaojian ;
He, Sailing .
OPTICS EXPRESS, 2022, 30 (02) :2326-2337
[9]  
Freude W, 2012, INT C TRANS OPT NETW
[10]   90-m/560-Mbps underwater wireless optical communication utilizing subband multiple-mode full permutation CAP combined with an SNR-weighted detector and multi-channel DFE [J].
Ge, Wenmin ;
Du, Zihao ;
Cai, Chengye ;
Song, Guangbin ;
Qin, Sitong ;
Wang, Haipeng ;
Zhang, Tianhao ;
Xu, Jing .
OPTICS EXPRESS, 2023, 31 (08) :13154-13168