C1-Positivity preserving Bi-quintic blended rational quartic zipper fractal interpolation surfaces

被引:0
作者
Vijay [1 ]
Chand, A. K. B. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
关键词
Rational quartic spline; Fractals; Zipper smooth fractal functions; Blending functions; Positivity; SIMILAR JORDAN ARCS; POSITIVE INTERPOLATION; SYSTEMS; CONSTRUCTION; DIMENSION;
D O I
10.1016/j.chaos.2024.115472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a new class of bi-quintic partially blended rational quartic zipper fractal interpolation surfaces (RQZFISs) tailored for surface data over a rectangular grid. The construction of these surfaces begins with the generation of a network of curves using univariable rational quartic spline zipper fractal interpolation functions (RQS ZFIFs) with variable scalings. These fractal curves are then blended with quintic blended functions. The proposed RQZFISs encompass traditional rational surfaces and a class of fractal surfaces as particular cases. We demonstrate that the bivariable interpolant uniformly converges to the data- generating function. Additionally, the theory of positivity preservation for these interpolants is explored, with practical examples provided to illustrate positivity-preserving bivariable interpolants.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Positivity-preserving rational bi-cubic spline interpolation for 3D positive data
    Abbas, Muhammad
    Abd. Majid, Ahmad
    Ali, Jamaludin Md.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 460 - 476
  • [2] More General Fractal Functions on the Sphere
    Akhtar, Md. Nasim
    Guru Prem Prasad, M.
    Navascues, M. A.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (06)
  • [3] Box dimension of α-fractal function with variable scaling factors in subintervals
    Akhtar, Md Nasim
    Prasad, M. Guru Prem
    Navascures, M. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 103 : 440 - 449
  • [4] On the self-similar Jordan arcs admitting structure parametrization
    Aseev, VV
    Tetenov, AV
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (04) : 581 - 592
  • [5] On selfsimilar Jordan curves on the plane
    Aseev, VV
    Tetenov, AV
    Kravchenko, AS
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (03) : 379 - 386
  • [6] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    [J]. CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [7] THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    HARRINGTON, AN
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) : 14 - 34
  • [8] Closed fractal interpolation surfaces
    Bouboulis, P.
    Dalla, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 116 - 126
  • [9] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [10] Image compression using recurrent bivariate fractal interpolation surfaces
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2063 - 2071