A comparison method for the fractional Laplacian and applications

被引:1
作者
Ataei, Alireza [1 ]
Tavakoli, Alireza [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Nonlinear eigenvalue problems; Hopf's Lemma; Fractional Laplacian; STRONG MAXIMUM PRINCIPLE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
[21]   Realization of the fractional Laplacian with nonlocal exterior conditions via forms method [J].
Claus, Burkhard ;
Warma, Mahamadi .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) :1597-1631
[22]   Error analysis of a collocation method on graded meshes for a fractional Laplacian problem [J].
Chen, Minghua ;
Deng, Weihua ;
Min, Chao ;
Shi, Jiankang ;
Stynes, Martin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
[23]   Nonlinear commutators for the fractional p-Laplacian and applications [J].
Schikorra, Armin .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :695-720
[24]   ON THE CONVERGENCE IN H1-NORM FOR THE FRACTIONAL LAPLACIAN [J].
Borthagaray, Juan Pablo ;
Ciarlet, Patrick, Jr. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) :1723-1743
[25]   MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN [J].
Lin, Guowei ;
Zheng, Xiongjun .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[26]   Variational Inequalities for the Fractional Laplacian [J].
Musina, Roberta ;
Nazarov, Alexander I. ;
Sreenadh, Konijeti .
POTENTIAL ANALYSIS, 2017, 46 (03) :485-498
[27]   A variable diffusivity fractional Laplacian [J].
Ervin, V. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (01)
[28]   The Pohozaev Identity for the Fractional Laplacian [J].
Ros-Oton, Xavier ;
Serra, Joaquim .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) :587-628
[29]   RESONANT PROBLEMS FOR FRACTIONAL LAPLACIAN [J].
Chen, Yutong ;
Su, Jiabao .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) :163-187
[30]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432