A comparison method for the fractional Laplacian and applications

被引:1
作者
Ataei, Alireza [1 ]
Tavakoli, Alireza [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Nonlinear eigenvalue problems; Hopf's Lemma; Fractional Laplacian; STRONG MAXIMUM PRINCIPLE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:29
相关论文
共 28 条
[11]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[12]   On weighted positivity and the Wiener regularity of a boundary point for the fractional Laplacian [J].
Eilertsen, S .
ARKIV FOR MATEMATIK, 2000, 38 (01) :53-75
[13]   The Dirichlet problem for nonlocal operators [J].
Felsinger, Matthieu ;
Kassmann, Moritz ;
Voigt, Paul .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) :779-809
[14]  
Franzina G., arXiv
[15]   A non-local semilinear eigenvalue problem [J].
Franzina, Giovanni ;
Licheri, Danilo .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) :2193-2221
[16]   Hopf's lemma and constrained radial symmetry for the fractional Laplacian [J].
Greco, Antonio ;
Servadei, Raffaella .
MATHEMATICAL RESEARCH LETTERS, 2016, 23 (03) :863-885
[17]   On the logistic equation for the fractional p-Laplacian [J].
Iannizzotto, Antonio ;
Mosconi, Sunra ;
Papageorgiou, Nikolaos S. S. .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) :1451-1468
[18]   The Wiener Criterion for Nonlocal Dirichlet Problems [J].
Kim, Minhyun ;
Lee, Ki-Ahm ;
Lee, Se-Chan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (03) :1961-2003
[19]  
Li F.-C., PREPRINT
[20]   ESPACES DINTERPOLATION ET THEOREME DE SOBOLEFF [J].
PEETRE, J .
ANNALES DE L INSTITUT FOURIER, 1966, 16 (01) :279-&