A comparison method for the fractional Laplacian and applications

被引:1
作者
Ataei, Alireza [1 ]
Tavakoli, Alireza [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Nonlinear eigenvalue problems; Hopf's Lemma; Fractional Laplacian; STRONG MAXIMUM PRINCIPLE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:29
相关论文
共 28 条
[1]   A Hopf lemma for the regional fractional Laplacian [J].
Abatangelo, Nicola ;
Fall, Mouhamed Moustapha ;
Temgoua, Remi Yvant .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) :95-113
[2]   A New Boundary Harnack Principle (Equations with Right Hand Side) [J].
Allen, Mark ;
Shahgholian, Henrik .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (03) :1413-1444
[3]  
Bjorn J., PREPRINT
[4]   Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations [J].
Bonforte, Matteo ;
Figalli, Alessio ;
Luis Vazquez, Juan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[5]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[6]   Positive solutions to the sublinear Lane-Emden equation are isolated [J].
Brasco, Lorenzo ;
De Philippis, Guido ;
Franzina, Giovanni .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (10) :1940-1972
[7]   A note on homogeneous Sobolev spaces of fractional order [J].
Brasco, Lorenzo ;
Salort, Ariel .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) :1295-1330
[8]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355
[9]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[10]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179