Bayesian adaptive lasso quantile regression with non-ignorable missing responses

被引:0
|
作者
Chen, Ranran [1 ]
Dao, Mai [2 ]
Ye, Keying [1 ]
Wang, Min [1 ]
机构
[1] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
[2] Wichita State Univ, Dept Math Stat & Phys, Wichita, KS USA
关键词
Quantile regression; Bayesian adaptive lasso; Non-ignorable missing data; High-dimensional analysis; VARIABLE SELECTION; MODELS; INFERENCE;
D O I
10.1007/s00180-024-01546-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop a fully Bayesian adaptive lasso quantile regression model to analyze data with non-ignorable missing responses, which frequently occur in various fields of study. Specifically, we employ a logistic regression model to deal with missing data of non-ignorable mechanism. By using the asymmetric Laplace working likelihood for the data and specifying Laplace priors for the regression coefficients, our proposed method extends the Bayesian lasso framework by imposing specific penalization parameters on each regression coefficient, enhancing our estimation and variable selection capability. Furthermore, we embrace the normal-exponential mixture representation of the asymmetric Laplace distribution and the Student-t approximation of the logistic regression model to develop a simple and efficient Gibbs sampling algorithm for generating posterior samples and making statistical inferences. The finite-sample performance of the proposed algorithm is investigated through various simulation studies and a real-data example.
引用
收藏
页码:1643 / 1682
页数:40
相关论文
共 50 条
  • [41] Model parameters estimation with non-ignorable missing data using influential exponential tilting resampling approach
    Gohil, Kavita
    Samawi, Hani
    Rochani, Haresh
    Yu, Lili
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 163 - 174
  • [42] Two-period, two-treatment crossover designs subject to non-ignorable missing data
    Matthews, John N. S.
    Henderson, Robin
    BIOSTATISTICS, 2013, 14 (04) : 626 - 638
  • [43] Analysing censored longitudinal data with non-ignorable missing values: depression in older age
    Falcaro, Milena
    Pendleton, Neil
    Pickles, Andrew
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2013, 176 (02) : 415 - 430
  • [44] Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses
    Ding, Xianwen
    Chen, Jiandong
    Chen, Xueping
    METRIKA, 2020, 83 (05) : 545 - 568
  • [45] Variational Bayesian Inference for Quantile Regression Models with Nonignorable Missing Data
    Li, Xiaoning
    Tuerde, Mulati
    Hu, Xijian
    MATHEMATICS, 2023, 11 (18)
  • [46] PARAMETRIC FRACTIONAL IMPUTATION FOR NON-IGNORABLE CATEGORICAL MISSING DATA WITH FOLLOW-UP
    Kim, Ji Young
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (02) : 239 - 250
  • [47] Goodness-of-fit tests for quantile regression with missing responses
    Perez-Gonzalez, Ana
    Cotos-Yanez, Tomas R.
    Gonzalez-Manteiga, Wenceslao
    Crujeiras-Casais, Rosa M.
    STATISTICAL PAPERS, 2021, 62 (03) : 1231 - 1264
  • [48] Flexible modeling of multiple nonlinear longitudinal trajectories with censored and non-ignorable missing outcomes
    Lin, Tsung-, I
    Wang, Wan-Lun
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (03) : 593 - 608
  • [49] A flexible approach for multivariate mixed-effects models with non-ignorable missing values
    Liu, Juxin
    Liu, Wei
    Wu, Lang
    Yan, Guohua
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3727 - 3743
  • [50] Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression
    Algamal, Zakariya Yahya
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 97 : 145 - 152