Bayesian adaptive lasso quantile regression with non-ignorable missing responses

被引:0
|
作者
Chen, Ranran [1 ]
Dao, Mai [2 ]
Ye, Keying [1 ]
Wang, Min [1 ]
机构
[1] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
[2] Wichita State Univ, Dept Math Stat & Phys, Wichita, KS USA
关键词
Quantile regression; Bayesian adaptive lasso; Non-ignorable missing data; High-dimensional analysis; VARIABLE SELECTION; MODELS; INFERENCE;
D O I
10.1007/s00180-024-01546-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop a fully Bayesian adaptive lasso quantile regression model to analyze data with non-ignorable missing responses, which frequently occur in various fields of study. Specifically, we employ a logistic regression model to deal with missing data of non-ignorable mechanism. By using the asymmetric Laplace working likelihood for the data and specifying Laplace priors for the regression coefficients, our proposed method extends the Bayesian lasso framework by imposing specific penalization parameters on each regression coefficient, enhancing our estimation and variable selection capability. Furthermore, we embrace the normal-exponential mixture representation of the asymmetric Laplace distribution and the Student-t approximation of the logistic regression model to develop a simple and efficient Gibbs sampling algorithm for generating posterior samples and making statistical inferences. The finite-sample performance of the proposed algorithm is investigated through various simulation studies and a real-data example.
引用
收藏
页码:1643 / 1682
页数:40
相关论文
共 50 条
  • [21] The Bayesian adaptive lasso regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    MATHEMATICAL BIOSCIENCES, 2018, 303 : 75 - 82
  • [22] Fine-tuned sensitivity analysis for non-ignorable missing data mechanism in linear regression models
    Zhu, Rong
    Yin, Peng
    Shi, Jian Qing
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 617 - 627
  • [23] Adaptive lasso penalised censored composite quantile regression
    Bang, Sungwan
    Cho, Hyungjun
    Jhun, Myoungshic
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (01) : 22 - 46
  • [24] Bayesian sensitivity analysis to the non-ignorable missing cause of failure for hybrid censored competing risks data
    Azizi, Fariba
    Mahabadi, Samaneh Eftekhari
    Omshi, Elham Mosayebi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2228 - 2255
  • [25] FULL-SEMIPARAMETRIC-LIKELIHOOD-BASED INFERENCE FOR NON-IGNORABLE MISSING DATA
    Liu, Yukun
    Li, Pengfei
    Qin, Jing
    STATISTICA SINICA, 2022, 32 (01) : 271 - 292
  • [26] RANK-BASED ESTIMATING EQUATION WITH NON-IGNORABLE MISSING RESPONSES VIA EMPIRICAL LIKELIHOOD
    Bindele, Huybrechts F.
    Zhao, Yichuan
    STATISTICA SINICA, 2018, 28 (04) : 1787 - 1820
  • [27] A SIMPLE AND EFFICIENT ESTIMATION METHOD FOR MODELS WITH NON-IGNORABLE MISSING DATA
    Ai, Chunrong
    Linton, Oliver
    Zhang, Zheng
    STATISTICA SINICA, 2020, 30 (04) : 1949 - 1970
  • [28] Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome
    Genback, Minna
    Stanghellini, Elena
    de Luna, Xavier
    STATISTICAL PAPERS, 2015, 56 (03) : 829 - 847
  • [29] USE BAYESIAN ADAPTIVE LASSO FOR TOBIT REGRESSION WITH REAL DATA
    AL-Sabbah, Shrook A. S.
    Raheem, Saif Hosam
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 2169 - 2173
  • [30] Bayesian empirical likelihood of quantile regression with missing observations
    Chang-Sheng Liu
    Han-Ying Liang
    Metrika, 2023, 86 : 285 - 313