One-step graph-based multi-view clustering via specific and unified nonnegative embeddings

被引:0
|
作者
El Hajjar, Sally [1 ]
Abdallah, Fahed [2 ,3 ]
Omrani, Hichem [1 ]
Chaaban, Alain Khaled [4 ]
Arif, Muhammad [6 ]
Alturki, Ryan [5 ]
Alghamdi, Mohammed J. [5 ]
机构
[1] Luxembourg Inst Socio Econ Res LISER, Urban Dev & Mobil Dept, 11 Porte Sci, L-4366 Esch Sur Alzette, Luxembourg
[2] Lebanese Univ, Beirut, Lebanon
[3] Univ Lorraine, LCOMS Lab, Nancy, France
[4] Umm Alqura Univ, Coll Comp, Dept Comp & Networks Engn, Mecca, Saudi Arabia
[5] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca, Saudi Arabia
[6] Umm Al Qura Univ, Coll Comp, Dept Comp Sci & Artificial Intelligence, Mecca, Saudi Arabia
关键词
Multi-view clustering; Specific nonnegative embedding; Unified nonnegative embedding; Cluster index matrix; Spectral projection; Auto-weighted strategy; MATRIX FACTORIZATION;
D O I
10.1007/s13042-024-02280-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.
引用
收藏
页码:5807 / 5822
页数:16
相关论文
共 50 条
  • [1] One-step graph-based incomplete multi-view clustering
    Zhou, Baishun
    Ji, Jintian
    Gu, Zhibin
    Zhou, Zihao
    Ding, Gangyi
    Feng, Songhe
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [2] One-step graph-based incomplete multi-view clustering
    Baishun Zhou
    Jintian Ji
    Zhibin Gu
    Zihao Zhou
    Gangyi Ding
    Songhe Feng
    Multimedia Systems, 2024, 30
  • [3] One-step multi-view spectral clustering by learning common and specific nonnegative embeddings
    Hongwei Yin
    Wenjun Hu
    Fanzhang Li
    Jungang Lou
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 2121 - 2134
  • [4] One-step multi-view spectral clustering by learning common and specific nonnegative embeddings
    Yin, Hongwei
    Hu, Wenjun
    Li, Fanzhang
    Lou, Jungang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (07) : 2121 - 2134
  • [5] Anchor Graph-Based Feature Selection for One-Step Multi-View Clustering
    Zhao, Wenhui
    Li, Qin
    Xu, Huafu
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7413 - 7425
  • [6] Unified One-Step Multi-View Spectral Clustering
    Tang, Chang
    Li, Zhenglai
    Wang, Jun
    Liu, Xinwang
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6449 - 6460
  • [7] Towards a unified framework for graph-based multi-view clustering
    Dornaika, F.
    El Hajjar, S.
    NEURAL NETWORKS, 2024, 173
  • [8] Consensus graph and spectral representation for one-step multi-view kernel based clustering
    El Hajjar, S.
    Dornaika, F.
    Abdallah, F.
    Barrena, N.
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [9] One-step incremental multi-view spectral clustering based on graph linkage learning
    Wang, Weijun
    Jing, Ling
    NEUROCOMPUTING, 2024, 590
  • [10] One-Step Multi-View Spectral Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    He, Wei
    Hu, Rongyao
    Lei, Cong
    Zhu, Pengfei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (10) : 2022 - 2034