A review on process parameter influence and optimization for 3D printing of fiber-reinforced thermoplastic composites

被引:1
|
作者
Zhai, Chenbo [1 ]
Chen, Yonglin [1 ]
Zhao, Yunmei [1 ]
Li, Qian [1 ]
Zhang, Zhen [1 ]
Yang, Weidong [1 ]
Li, Yan
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, 100 Zhangwu Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Fiber-reinforced thermoplastic composites; 3D printing; process parameters; mechanical properties; CONTINUOUS CARBON; MECHANICAL-PROPERTIES; LAYER THICKNESS; POLYMER COMPOSITES; TENSILE PROPERTIES; TEMPERATURE; IMPACT; PLA; PERFORMANCE; FILAMENT;
D O I
10.1177/07316844241273038
中图分类号
TB33 [复合材料];
学科分类号
摘要
Additive manufacturing technology has the potential to bring about significant technological changes to polymer matrix composites. In comparison to traditional manufacturing processes, 3D printing technology is being increasingly utilized in a variety of industries, including aerospace, vehicles, transportation, and medical engineering. The advantages of this technology include low cost, rapid prototyping, and the ability to manufacture complex structures. Nevertheless, the mutual influence and constraints of process parameters in the manufacturing process have led to the fact that the properties of 3D-printed composites have not been able to fully meet the requirements of practical applications. This paper focuses on the current development of the 3D printing process for fiber-reinforced thermoplastic composites. This paper especially reviews the research on the influence of Fused Filament Fabrication (FFF) process parameters (printing temperature, printing speed, ply thickness, and printing path, among others) on the mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites. It discusses the problems brought about by the process parameters in the manufacturing process and proposes possible solutions. Finally, it considers the future development prospects and research directions of additive manufacturing of thermoplastic composites.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Ultrasonic welding of fiber-reinforced thermoplastic composites: a review
    Li, Haijun
    Chen, Chao
    Yi, Ruixiang
    Li, Yuxiang
    Wu, Jinliang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (1-2): : 29 - 57
  • [22] Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    JOURNAL OF RENEWABLE MATERIALS, 2022, 10 (02) : 329 - 358
  • [23] Design of short fiber-reinforced thermoplastic composites: A review
    Jiang, Lijuan
    Zhou, Yinzhi
    Jin, Fengnian
    POLYMER COMPOSITES, 2022, 43 (08) : 4835 - 4847
  • [24] Ultrasonic welding of fiber-reinforced thermoplastic composites: a review
    Haijun Li
    Chao Chen
    Ruixiang Yi
    Yuxiang Li
    Jinliang Wu
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 29 - 57
  • [25] 3D printing continuous natural fiber reinforced polymer composites: A review
    Cheng, Ping
    Peng, Yong
    Wang, Kui
    Le Duigou, Antoine
    Ahzi, Said
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (01)
  • [26] Investigation of the shear properties of 3D printed short carbon fiber-reinforced thermoplastic composites
    Tanabi, Hamed
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2022, 35 (11) : 2177 - 2193
  • [27] A Novel Approach for 3D Printing Fiber-Reinforced Mortars
    Ungureanu, Dragos
    Onutu, Catalin
    Isopescu, Dorina Nicolina
    Taranu, Nicolae
    Zghibarcea, Stefan Vladimir
    Spiridon, Ionut Alexandru
    Polcovnicu, Razvan Andrei
    MATERIALS, 2023, 16 (13)
  • [28] The Road to Improved Fiber-Reinforced 3D Printing Technology
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    TECHNOLOGIES, 2020, 8 (04)
  • [29] 3D compaction printing of a continuous carbon fiber reinforced thermoplastic
    Ueda, Masahito
    Kishimoto, Shun
    Yamawaki, Masao
    Matsuzaki, Ryosuke
    Todoroki, Akira
    Hirano, Yoshiyasu
    Le Duigou, Antoine
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 137 (137)
  • [30] Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites
    Dou, Hao
    Cheng, Yunyong
    Ye, Wenguang
    Zhang, Dinghua
    Li, Junjie
    Miao, Zhoujun
    Rudykh, Stephan
    MATERIALS, 2020, 13 (17)