Electrospun Fiber-Based Tubular Structures as 3D Scaffolds to Generate In Vitro Models for Small Intestine

被引:0
|
作者
Zavagna, Lorenzo [1 ,2 ]
Canelli, Eligio F. [3 ]
Azimi, Bahareh [1 ,3 ]
Troisi, Fabiola [4 ]
Scarpelli, Lorenzo [5 ]
Macchi, Teresa [6 ]
Gallone, Giuseppe [3 ]
Labardi, Massimiliano [5 ]
Giovannoni, Roberto [4 ,7 ,8 ]
Milazzo, Mario [1 ,3 ]
Danti, Serena [1 ,3 ,5 ,7 ]
机构
[1] Natl Interuniv Consortium Mat Sci & Technol INSTM, I-50121 Florence, Italy
[2] Univ Siena, PEGASO Doctoral Sch Life Sci, I-53100 Siena, Italy
[3] Univ Pisa, Dept Civil & Ind Engn, Largo Lucio Lazzarino 2, I-56122 Pisa, Italy
[4] Univ Pisa, Dept Biol, I-56126 Pisa, Italy
[5] Natl Res Council CNR, Inst Chem & Phys Proc IPCF, Pisa Res Area, I-56124 Pisa, Italy
[6] Univ Pisa, Dept Translat Res New Technol Med & Surg, I-56126 Pisa, Italy
[7] Univ Pisa, 3Rs Ctr, I-56100 Pisa, Italy
[8] Univ Pisa, Interdept Res Ctr Nutraceut & Food Hlth NUTRAFOOD, I-56126 Pisa, Italy
关键词
Caco-2; cells; piezoelectric; polyacrylonitrile (PAN); polycaprolactone (PCL); ZO-1; ULTRAFINE FIBERS; FABRICATION; ABSORPTION; NANOFIBERS; PHYSIOLOGY; RELEVANCE;
D O I
10.1002/mame.202400123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, in vitro models emerge as valuable tools in biomedical research by enabling the investigation of complex physiological processes in a controlled environment, replicating some traits of interest of the biological tissues. This study focuses on the development of tubular polymeric scaffolds, made of electrospun fibers, aimed to generate three-dimensional (3D) in vitro intestinal models resembling the lumen of the gut. Polycaprolactone (PCL) and polyacrylonitrile (PAN) are used to produce tightly arranged ultrafine fiber meshes via electrospinning in the form of continuous tubular structures, mimicking the basement membrane on which the epithelial barrier is formed. Morphological, physical, mechanical, and piezoelectric properties of the PCL and PAN tubular scaffolds are investigated. They are cultured with Caco-2 cells using different biological coatings (i.e., collagen, gelatin, and fibrin) and their capability of promoting a compact epithelial layer is assessed. PCL and PAN scaffolds show 42% and 50% porosity, respectively, with pore diameters and size suitable to impede cell penetration, thus promoting an intestinal epithelial barrier formation. Even if both polymeric structures allow Caco-2 cell adhesion, PAN fiber meshes best suit many requirements needed by this model, including highest mechanical strength upon expansion, porosity and piezoelectric properties, along with the lowest pore size. This study showcases the creation of tubular continuous scaffolds through electrospinning, composed of finely woven fibers of polyacrylonitrile (PAN) and polycaprolactone (PCL). These scaffolds support the formation of an intestinal epithelial layer in vitro, aiming to replicate the small intestine 3D structure. PAN emerges as the most promising material based on wettability, mechanical, piezoelectric and biological properties. image
引用
收藏
页数:13
相关论文
共 23 条
  • [21] Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp Complex: a Literature Review
    Hadjichristou, Christina
    About, Imad
    Koidis, Petros
    Bakopoulou, Athina
    STEM CELL REVIEWS AND REPORTS, 2021, 17 (03) : 785 - 802
  • [22] On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: Pitfalls, progress, and future perspectives
    Mantecon-Oria, Marian
    Rivero, Maria J.
    Diban, Nazely
    Urtiaga, Ane
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [23] 3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling
    Li, Xu-Ran
    Deng, Qing-Song
    He, Shu-Hang
    Liu, Po-Lin
    Gao, Yuan
    Wei, Zhan-Ying
    Zhang, Chang-Ru
    Wang, Fei
    Zhu, Tong-He
    Dawes, Helen
    Rui, Bi-Yu
    Tao, Shi-Cong
    Guo, Shang-Chun
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)