Geometric Linearization for Constraint Hamiltonian Systems

被引:1
作者
Paliathanasis, Andronikos [1 ,2 ,3 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[2] Stellenbosch Univ, Sch Data Sci & Computat Thinking, 44 Banghoek Rd, ZA-7600 Stellenbosch, South Africa
[3] Univ Catolica Norte, Dept Matemat, Avda Angamos 0610, Antofagasta 1280, Chile
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 08期
关键词
constraint Hamiltonian systems; linearization; exact solutions; Noether symmetries; ORDINARY DIFFERENTIAL-EQUATIONS; EISENHART LIFT; CONSERVATION LAW; SYMMETRIES; FIELD; GRAVITATION; POINT;
D O I
10.3390/sym16080988
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the geometric linearization of constraint Hamiltonian systems using the Jacobi metric and the Eisenhart lift. We establish a connection between linearization and maximally symmetric spacetimes, focusing on the Noether symmetries admitted by the constraint Hamiltonian systems. Specifically, for systems derived from the singular Lagrangian LN,qk,q(center dot)k=12Ngijq(center dot)iq(center dot)j-NV(qk), where N and qi are dependent variables and dimgij=n, the existence of nn+12 Noether symmetries is shown to be equivalent to the linearization of the equations of motion. The application of these results is demonstrated through various examples of special interest. This approach opens new directions in the study of differential equation linearization.
引用
收藏
页数:18
相关论文
共 83 条
  • [61] Classical and quantum solutions in scalar field cosmology via the Eisenhart lift and linearization
    Paliathanasis, Andronikos
    [J]. PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [62] Projective Collineations of Decomposable Spacetimes Generated by the Lie Point Symmetries of Geodesic Equations
    Paliathanasis, Andronikos
    [J]. SYMMETRY-BASEL, 2021, 13 (06):
  • [63] Symmetries and singularities of the Szekeres system
    Paliathanasis, Andronikos
    Leach, P. G. L.
    [J]. PHYSICS LETTERS A, 2017, 381 (15) : 1277 - 1280
  • [64] INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS
    PATERA, J
    SHARP, RT
    WINTERNITZ, P
    ZASSENHAUS, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) : 986 - 994
  • [65] Comment on a theorem of Hojman and its generalizations
    Pillay, T
    Leach, PGL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6999 - 7002
  • [66] Geometric Linearization of Ordinary Differential Equations
    Qadir, Asghar
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [67] Reissner H, 1916, ANN PHYS-BERLIN, V50, P106
  • [68] Ryan M., 1975, Homogeneous Relativistic Cosmologies
  • [69] Linearization of systems of four second-order ordinary differential equations
    Safdar, M.
    Ali, S.
    Mahomed, F. M.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (03): : 581 - 594
  • [70] SYMMETRIES OF NONLINEAR DIFFERENTIAL-EQUATIONS AND LINEARIZATION
    SARLET, W
    MAHOMED, FM
    LEACH, PGL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02): : 277 - 292