Geometric Linearization for Constraint Hamiltonian Systems

被引:1
作者
Paliathanasis, Andronikos [1 ,2 ,3 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[2] Stellenbosch Univ, Sch Data Sci & Computat Thinking, 44 Banghoek Rd, ZA-7600 Stellenbosch, South Africa
[3] Univ Catolica Norte, Dept Matemat, Avda Angamos 0610, Antofagasta 1280, Chile
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 08期
关键词
constraint Hamiltonian systems; linearization; exact solutions; Noether symmetries; ORDINARY DIFFERENTIAL-EQUATIONS; EISENHART LIFT; CONSERVATION LAW; SYMMETRIES; FIELD; GRAVITATION; POINT;
D O I
10.3390/sym16080988
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the geometric linearization of constraint Hamiltonian systems using the Jacobi metric and the Eisenhart lift. We establish a connection between linearization and maximally symmetric spacetimes, focusing on the Noether symmetries admitted by the constraint Hamiltonian systems. Specifically, for systems derived from the singular Lagrangian LN,qk,q(center dot)k=12Ngijq(center dot)iq(center dot)j-NV(qk), where N and qi are dependent variables and dimgij=n, the existence of nn+12 Noether symmetries is shown to be equivalent to the linearization of the equations of motion. The application of these results is demonstrated through various examples of special interest. This approach opens new directions in the study of differential equation linearization.
引用
收藏
页数:18
相关论文
共 83 条
  • [1] Type-II hidden symmetries of the linear 2D and 3D wave equations
    Abraham-Shrauner, Barbara
    Govinder, Keshlan S.
    Arrigo, Daniel J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (20): : 5739 - 5747
  • [2] Linearization of third-order ordinary differential equations u"′ = f (x, u, u′, u") via point transformations
    Al-Dweik, Ahmad Y.
    Mustafa, M. T.
    Mahomed, Fazal Mahmood
    Alassar, Rajai S.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6955 - 6967
  • [3] Linearizability criteria for systems of two second-order differential equations by complex methods
    Ali, S.
    Mahomed, F. M.
    Qadir, Asghar
    [J]. NONLINEAR DYNAMICS, 2011, 66 (1-2) : 77 - 88
  • [4] Ali S., 2014, J. Appl. Math, V2014, P793247, DOI DOI 10.1155/2014/793247
  • [5] Projective transformations and symmetries of differential equations
    Aminova, AV
    [J]. SBORNIK MATHEMATICS, 1995, 186 (11-12) : 1711 - 1726
  • [6] Spinor wave function of the Universe in non-minimally coupled varying constants cosmologies
    Balcerzak, Adam
    Lisaj, Mateusz
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (05):
  • [7] INHOMOGENEOUS COSMOLOGIES WITH COSMOLOGICAL CONSTANT
    BARROW, JD
    STEINSCHABES, J
    [J]. PHYSICS LETTERS A, 1984, 103 (6-7) : 315 - 317
  • [8] Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Torres, Pedro J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [9] Berkovich L.M., 1989, Factorization and Transformations of Ordinary Differential Equations
  • [10] Berkovich LM, 2007, APPL ANAL DISCR MATH, V1, P122