Identifying influential nodes: A new method based on dynamic propagation probability model

被引:3
|
作者
Wang, Jinping [1 ]
Sun, Shaowei [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
关键词
Influential nodes; Dynamic propagation model; SIR model; Complex network; COMPLEX NETWORKS; CENTRALITY; RANKING; SPREADERS; IDENTIFICATION; EFFICIENCY; CLUSTER;
D O I
10.1016/j.chaos.2024.115159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Identifying influential nodes in complex networks persists as a crucial issue due to its practical applications in the real world. The propagation model is a special method for identifying influential nodes based on propagation dynamics. However, most of propagation-based methods have not delved deeply into the impact of network topology on the propagation process. In this paper, we propose a method based on the dynamic propagation probability model, called DPP. The main idea of this method is to characterize the impact of a node on the basis of its propagation capacity during propagation process by using dynamic propagation probability within its three level neighborhood. This new metric redefines the propagation probability of neighbors by refining the propagation process, which allows the propagation probability to be transmitted in accordance with the network structure. To validate the performance of the proposed method, we compare with eight different methods from four aspects in 11 real-world networks. The experimental results demonstrate that the DPP method has good performance in most cases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model
    Xu, Guiqiong
    Meng, Lei
    CHAOS SOLITONS & FRACTALS, 2023, 168
  • [2] A dynamic weighted TOPSIS method for identifying influential nodes in complex networks
    Yang, Pingle
    Liu, Xin
    Xu, Guiqiong
    MODERN PHYSICS LETTERS B, 2018, 32 (19):
  • [3] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [4] Identifying influential nodes based on fluctuation conduction network model
    Wang, Ze
    Gao, Xiangyun
    Tang, Renwu
    Liu, Xueyong
    Sun, Qingru
    Chen, Zhihua
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 514 : 355 - 369
  • [5] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10) : 1465 - 1476
  • [6] A new method of identifying influential nodes in complex networks based on TOPSIS
    Du, Yuxian
    Gao, Cai
    Hu, Yong
    Mahadevan, Sankaran
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 : 57 - 69
  • [7] Identifying influential nodes: A new method based on network efficiency of edge weight updating
    Shang, Qiuyan
    Zhang, Bolong
    Li, Hanwen
    Deng, Yong
    CHAOS, 2021, 31 (03)
  • [8] A novel method for identifying influential nodes in complex networks based on multiple attributes
    Liu, Dong
    Nie, Hao
    Zhang, Baowen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [9] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [10] A novel method for identifying influential nodes in complex networks based on gravity model
    Jiang, Yuan
    Yang, Song-Qing
    Yan, Yu-Wei
    Tong, Tian-Chi
    Dai, Ji-Yang
    CHINESE PHYSICS B, 2022, 31 (05)