Overview of fine-tuning CNN-Based Models for X-ray Image Classification

被引:0
作者
Ngoc Ha Pham [1 ]
Giang Son Tran [2 ]
机构
[1] FPT Univ, Informat & Commun Technol Dept, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, ICT Lab, Univ Sci & Technol Hanoi, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Convolution Neural Network; Deep Learning; Residual Neural Network; Pneumonia; Classification; PNEUMONIA;
D O I
10.1145/3654522.3654572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lung infection is usually the cause of pneumonia, a common medical condition. It irritates the lungs' tissues and reduces their functionality. The severity of pneumonia can vary from a minor illness to a serious one. Identifying the exact infection causing the problem can be difficult. Diagnosis is often based on symptoms and physical examination, sometimes with chest X-rays. On the other hand, reviewing chest X-rays is a challenging and subjective task. In this work, we improve the CNN architecture to improve the X-ray image classification score performance. The objective of this study is to evaluate the fine-tuning of ResNet50V2. The ensemble technique that has been recommended yields very strong classification results, outperforming other models with an improvement of almost 97% in accuracy.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 50 条
  • [31] Performance of Fine-Tuning Convolutional Neural Networks for HEp-2 Image Classification
    Taormina, Vincenzo
    Cascio, Donato
    Abbene, Leonardo
    Raso, Giuseppe
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 20
  • [32] Lightweight CNN-based malware image classification for resource-constrained applications
    Hota, Ashlesha
    Panja, Subir
    Nag, Amitava
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2022,
  • [33] EEG Motor Imagery Classification by Feature Extracted Deep 1D-CNN and Semi-Deep Fine-Tuning
    Taghizadeh, Mohamad
    Vaez, Fatemeh
    Faezipour, Miad
    IEEE ACCESS, 2024, 12 : 111265 - 111279
  • [34] PneumoniaNet: Automated Detection and Classification of Pediatric Pneumonia Using Chest X-ray Images and CNN Approach
    Alsharif, Roaa
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    Qasmieh, Isam Abu
    Mustafa, Wan Azani
    Alquran, Hiam
    ELECTRONICS, 2021, 10 (23)
  • [35] Lightweight CNN-based malware image classification for resource-constrained applicationsLightweight CNN-based malware image classification for resource-constrained applicationsA. Hota et al.
    Ashlesha Hota
    Subir Panja
    Amitava Nag
    Innovations in Systems and Software Engineering, 2025, 21 (1) : 1 - 14
  • [36] Multiclass wound image classification using an ensemble deep CNN-based classifier
    Rostami, Behrouz
    Anisuzzaman, D. M.
    Wang, Chuanbo
    Gopalakrishnan, Sandeep
    Niezgoda, Jeffrey
    Yu, Zeyun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [37] Grid Approach For X-Ray Image Classification
    Bertalya, Prihandoko
    ICICI-BME: 2009 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATION, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING, 2009, : 265 - 269
  • [38] PERFORMANCE OF DIFFERENT CNN-BASED MODELS ON CLASSIFICATION OF STEEL SHEET SURFACE DEFECTS
    Tran, Van Than
    Nguyen, Ba-Phu
    Doan, Nhat-Phi
    Tran, Thanh Danh
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, 18 (01): : 554 - 562
  • [39] Fine-Tuning Convolutional Deep Features For MRI Based Brain Tumor Classification
    Ahmed, Kaoutar B.
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    Liu, Renhao
    Gatenby, Robert A.
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [40] SpinalXNet: Transfer Learning with Modified Fully Connected Layer for X-Ray Image Classification
    Kumar, Keshav
    Khanam, Sadia
    Bhuiyan, Md Mahbub Islam
    Qazani, Mohammad Reza Chalak
    Mondal, Subrota Kumar
    Asadi, Houshyar
    Kabir, H. M. Dipu
    Khorsavi, Abbas
    Nahavandi, Saeid
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,