Overview of fine-tuning CNN-Based Models for X-ray Image Classification

被引:0
作者
Ngoc Ha Pham [1 ]
Giang Son Tran [2 ]
机构
[1] FPT Univ, Informat & Commun Technol Dept, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, ICT Lab, Univ Sci & Technol Hanoi, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Convolution Neural Network; Deep Learning; Residual Neural Network; Pneumonia; Classification; PNEUMONIA;
D O I
10.1145/3654522.3654572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lung infection is usually the cause of pneumonia, a common medical condition. It irritates the lungs' tissues and reduces their functionality. The severity of pneumonia can vary from a minor illness to a serious one. Identifying the exact infection causing the problem can be difficult. Diagnosis is often based on symptoms and physical examination, sometimes with chest X-rays. On the other hand, reviewing chest X-rays is a challenging and subjective task. In this work, we improve the CNN architecture to improve the X-ray image classification score performance. The objective of this study is to evaluate the fine-tuning of ResNet50V2. The ensemble technique that has been recommended yields very strong classification results, outperforming other models with an improvement of almost 97% in accuracy.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 50 条
  • [21] MRI Image Registration Considerably Improves CNN-Based Disease Classification
    Klingenberg, Malte
    Stark, Didem
    Eitel, Fabian
    Ritter, Kerstin
    MACHINE LEARNING IN CLINICAL NEUROIMAGING, 2021, 13001 : 44 - 52
  • [22] A CNN-Based Mosquito Classification Using Image Transformation of Wingbeat Features
    Alvaro Luna-Gonzalez, Jose
    Robles-Camarillo, Daniel
    Nakano-Miyatake, Mariko
    Lanz-Mendoza, Humberto
    Perez-Meana, Hector
    KNOWLEDGE INNOVATION THROUGH INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_20), 2020, 327 : 127 - 137
  • [23] Enhanced Deep Learning for Pathology Image Classification: A Knowledge Transfer based Stepwise Fine-tuning Scheme
    Qu, Jia
    Hiruta, Nobuyuki
    Terai, Kensuke
    Nosato, Hirokazu
    Murakawa, Masahiro
    Sakanashi, Hidenori
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 92 - 99
  • [24] Skin Microstructure Segmentation and Aging Classification Using CNN-Based Models
    Moon, Cho-, I
    Lee, Onseok
    IEEE ACCESS, 2022, 10 : 4948 - 4956
  • [25] Driving Behavior Primitive Classification Using CNN-Based Fusion Models
    Cui, Xiaotong
    Li, Xiansheng
    Zheng, Xuelian
    Ren, Yuanyuan
    IEEE ACCESS, 2024, 12 : 56344 - 56355
  • [26] HEp-2 Intensity Classification based on Deep Fine-tuning
    Taormina, Vincenzo
    Cascio, Donato
    Abbene, Leonardo
    Raso, Giuseppe
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2: BIOIMAGING, 2020, : 143 - 149
  • [27] Medical X-ray Image Classification Method Based on Convolutional Neural Networks
    Gancheva, Veska
    Jongov, Tsviatko
    Georgiev, Ivaylo
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2023, PT II, 2023, 13920 : 225 - 244
  • [28] Investigation of Different CNN-Based Models for Improved Bird Sound Classification
    Xie, Jie
    Hu, Kai
    Zhu, Mingying
    Yu, Jinghu
    Zhu, Qibing
    IEEE ACCESS, 2019, 7 : 175353 - 175361
  • [29] Transfer Learning Vs. Fine-Tuning in Bilinear CNN for Lung Nodules Classification on CT Scans
    Mastouri, Rekka
    Khlifa, Nawres
    Neji, Henda
    Hantous-Zannad, Saoussen
    AIPR 2020: 2020 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, 2020, : 99 - 103
  • [30] A lightweight CNN-based network on COVID-19 detection using X-ray and CT images
    Huang, Mei-Ling
    Liao, Yu-Chieh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146