机构:
Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
Meng, Wei
[1
,2
]
Lu, Jiakuan
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R ChinaGuilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
Lu, Jiakuan
[3
]
机构:
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
A permutation phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on a group G is called a skew morphism of G if phi(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (1) = 1$$\end{document}, and there exists an integer-valued function pi:G -> Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi : G \rightarrow Z_m$$\end{document}, where m is the order of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, such that phi(ab)=phi(a)phi pi(a)(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (ab) = \varphi (a)\varphi <^>{\pi (a)}(b)$$\end{document}, for all a,b is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b\in G$$\end{document}. A skew morphism phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is smooth if the associated power function pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} takes constant values on each orbit of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. In this paper, we shall classify the smooth skew morphisms of semi-dihedral groups.
机构:
Zhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Zhejiang, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Hu, Kan
Kwon, Young Soo
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Math, Gyongsan 712749, South KoreaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Kwon, Young Soo
Zhang, Jun-Yang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
机构:
Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R ChinaMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
机构:
Univ Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Dolinar, G.
Kuzma, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, FAMNIT, Glagoljaska 8, SI-6000 Koper, Slovenia
Inst Math Phys & Mech, Dept Math, Jadranska 19, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Kuzma, B.
Nagy, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Inst Math, MTA DE Lendulet Funct Anal Res Grp, POB 12, H-4010 Debrecen, HungaryUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Nagy, G.
Szokol, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Inst Math, MTA DE Lendulet Funct Anal Res Grp, POB 12, H-4010 Debrecen, HungaryUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
机构:
Zhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R China
Hu, Kan
Yu, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Sch Math & Informat Sci, Nanning, Guangxi, Peoples R China
Guangxi Univ, Ctr Appl Math Guangxi, Nanning, Guangxi, Peoples R China
Capital Normal Univ, Sch Math Sci, Beijing, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R China
机构:
Zhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Zhejiang, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Hu, Kan
Kwon, Young Soo
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Math, Gyongsan 712749, South KoreaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
Kwon, Young Soo
Zhang, Jun-Yang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
机构:
Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R ChinaMinnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
机构:
Univ Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Dolinar, G.
Kuzma, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, FAMNIT, Glagoljaska 8, SI-6000 Koper, Slovenia
Inst Math Phys & Mech, Dept Math, Jadranska 19, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Kuzma, B.
Nagy, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Inst Math, MTA DE Lendulet Funct Anal Res Grp, POB 12, H-4010 Debrecen, HungaryUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
Nagy, G.
Szokol, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Inst Math, MTA DE Lendulet Funct Anal Res Grp, POB 12, H-4010 Debrecen, HungaryUniv Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
机构:
Zhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R China
Hu, Kan
Yu, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Sch Math & Informat Sci, Nanning, Guangxi, Peoples R China
Guangxi Univ, Ctr Appl Math Guangxi, Nanning, Guangxi, Peoples R China
Capital Normal Univ, Sch Math Sci, Beijing, Peoples R ChinaZhejiang Ocean Univ, Dept Math, Zhoushan, Zhejiang, Peoples R China