Smooth skew morphisms on semi-dihedral groups

被引:0
作者
Meng, Wei [1 ,2 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley map; Smooth skew morphism; Semi-dihedral group; REGULAR CAYLEY MAPS; CLASSIFICATION;
D O I
10.1007/s10801-024-01362-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A permutation phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on a group G is called a skew morphism of G if phi(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (1) = 1$$\end{document}, and there exists an integer-valued function pi:G -> Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi : G \rightarrow Z_m$$\end{document}, where m is the order of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, such that phi(ab)=phi(a)phi pi(a)(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (ab) = \varphi (a)\varphi <^>{\pi (a)}(b)$$\end{document}, for all a,b is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b\in G$$\end{document}. A skew morphism phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is smooth if the associated power function pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} takes constant values on each orbit of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. In this paper, we shall classify the smooth skew morphisms of semi-dihedral groups.
引用
收藏
页码:1031 / 1060
页数:30
相关论文
共 50 条
  • [21] Classification of skew morphisms of cyclic groups which are square roots of automorphisms
    Hu, Kan
    Kwon, Young Soo
    Zhang, Jun-Yang
    ARS MATHEMATICA CONTEMPORANEA, 2021, 21 (02)
  • [22] Regular Cayley maps of skew-type 3 for dihedral groups
    Zhang, Jun-Yang
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1163 - 1172
  • [23] Restricted skew-morphisms on matrix algebras
    Dolinar, G.
    Kuzma, B.
    Nagy, G.
    Szokol, P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 490 : 1 - 17
  • [24] On exact products of two dihedral groups
    Hu, Kan
    Yu, Hao
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [25] Skew product groups for monolithic groups
    Bachraty, Martin
    Conder, Marston
    Verret, Gabriel
    ALGEBRAIC COMBINATORICS, 2022, 5 (05): : 785 - 802
  • [26] Regular Cayley maps for dihedral groups
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 84 - 124
  • [27] Enumeration of Cubic Cayley Graphs on Dihedral Groups
    Huang, Xue Yi
    Huang, Qiong Xiang
    Lu, Lu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (07) : 996 - 1010
  • [28] SOME RELATIVES OF THE DIHEDRAL GROUP AS GALOIS GROUPS
    Ziapkov, Nikola P.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2009, 62 (09): : 1063 - 1066
  • [29] Locally primitive Cayley graphs of dihedral groups
    Pan, Jiangmin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 39 - 52
  • [30] Classification of reflexible Cayley maps for dihedral groups
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 127 : 187 - 204