Smooth skew morphisms on semi-dihedral groups

被引:0
作者
Meng, Wei [1 ,2 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley map; Smooth skew morphism; Semi-dihedral group; REGULAR CAYLEY MAPS; CLASSIFICATION;
D O I
10.1007/s10801-024-01362-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A permutation phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on a group G is called a skew morphism of G if phi(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (1) = 1$$\end{document}, and there exists an integer-valued function pi:G -> Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi : G \rightarrow Z_m$$\end{document}, where m is the order of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, such that phi(ab)=phi(a)phi pi(a)(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (ab) = \varphi (a)\varphi <^>{\pi (a)}(b)$$\end{document}, for all a,b is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b\in G$$\end{document}. A skew morphism phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is smooth if the associated power function pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} takes constant values on each orbit of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. In this paper, we shall classify the smooth skew morphisms of semi-dihedral groups.
引用
收藏
页码:1031 / 1060
页数:30
相关论文
共 50 条
  • [11] Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup
    Carlson, Jon F.
    Mazza, Nadia
    Thevenaz, Jacques
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) : 157 - 177
  • [12] Cyclic complements and skew morphisms of groups
    Conder, Marston D. E.
    Jajcay, Robert
    Tucker, Thomas W.
    JOURNAL OF ALGEBRA, 2016, 453 : 68 - 100
  • [13] Skew-morphisms of cyclic 2-groups
    Du, Shaofei
    Hu, Kan
    JOURNAL OF GROUP THEORY, 2019, 22 (04) : 617 - 635
  • [14] Quotients of skew morphisms of cyclic groups
    Bachraty, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (02)
  • [15] Skew-morphisms of nonabelian characteristically simple groups
    Chen, Jiyong
    Du, Shaofei
    Li, Cai Heng
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [16] Hitting time, resistance distance and Kirchhoff index of Cayley graphs over dicyclic and semi-dihedral groups
    Yang, Jing
    Wu, Yongjiang
    Feng, Lihua
    Liu, Weijun
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 448
  • [17] Skew-morphisms of elementary abelian p-groups
    Du, Shaofei
    Luo, Wenjuan
    Yu, Hao
    Zhang, Junyang
    JOURNAL OF GROUP THEORY, 2024, 27 (06) : 1337 - 1355
  • [18] Observations about skew morphisms of cyclic groups
    Bachraty, Martin
    Hagara, Michal
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (01)
  • [19] Skew-morphisms of cyclic p-groups
    Kovacs, Istvan
    Nedela, Roman
    JOURNAL OF GROUP THEORY, 2017, 20 (06) : 1135 - 1154
  • [20] Complete regular dessins and skew-morphisms of cyclic groups
    Feng, Yan-Quan
    Hu, Kan
    Nedela, Roman
    Skoviera, Martin
    Wang, Na-Er
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (02) : 289 - 307