Smooth skew morphisms on semi-dihedral groups

被引:0
作者
Meng, Wei [1 ,2 ]
Lu, Jiakuan [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen 518055, Guangdong, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley map; Smooth skew morphism; Semi-dihedral group; REGULAR CAYLEY MAPS; CLASSIFICATION;
D O I
10.1007/s10801-024-01362-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A permutation phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on a group G is called a skew morphism of G if phi(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (1) = 1$$\end{document}, and there exists an integer-valued function pi:G -> Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi : G \rightarrow Z_m$$\end{document}, where m is the order of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, such that phi(ab)=phi(a)phi pi(a)(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (ab) = \varphi (a)\varphi <^>{\pi (a)}(b)$$\end{document}, for all a,b is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b\in G$$\end{document}. A skew morphism phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is smooth if the associated power function pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} takes constant values on each orbit of phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. In this paper, we shall classify the smooth skew morphisms of semi-dihedral groups.
引用
收藏
页码:1031 / 1060
页数:30
相关论文
共 50 条
  • [1] Smooth skew morphisms of dihedral groups
    Wang, Na-Er
    Hu, Kan
    Yuan, Kai
    Zhang, Jun-Yang
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (02) : 527 - 547
  • [2] A classification of skew morphisms of dihedral groups
    Hu, Kan
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF GROUP THEORY, 2022, : 547 - 569
  • [3] On the skew-morphisms of dihedral groups
    Zhang, Jun-Yang
    Du, Shaofei
    JOURNAL OF GROUP THEORY, 2016, 19 (06) : 993 - 1016
  • [4] Smooth skew morphisms of dicyclic groups
    Hu, Kan
    Ruan, Dongyue
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (04) : 1119 - 1134
  • [5] Generalized Commuting Graph of Dihedral, Semi-dihedral and Quasi-dihedral Groups
    El-Sanfaz, Mustafa Anis
    Sarmin, Nor Haniza
    Zamri, Siti Norziahidayu Amzee
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2021, 17 (06): : 711 - 719
  • [6] Smooth skew morphisms of dicyclic groups
    Kan Hu
    Dongyue Ruan
    Journal of Algebraic Combinatorics, 2022, 56 : 1119 - 1134
  • [7] Regular t-balanced Cayley maps on semi-dihedral groups
    Oh, Ju-Mok
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 480 - 493
  • [8] RECIPROCAL SKEW MORPHISMS OF CYCLIC GROUPS
    Hu, K.
    Nedela, R.
    Wang, N-E
    Yuan, K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 305 - 318
  • [9] Perfect quantum state transfer on Cayley graphs over semi-dihedral groups
    Luo, Gaojun
    Cao, Xiwang
    Wang, Dandan
    Wu, Xia
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) : 6358 - 6374
  • [10] Classification of cyclic groups underlying only smooth skew morphisms
    Hu, Kan
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 849 - 862