An introduction to data-driven modelling of the water-energy-food-ecosystem nexus

被引:7
作者
Jonsson, Elise [1 ]
Todorovic, Andrijana [2 ]
Blicharska, Malgorzata [5 ]
Francisco, Andreina [3 ]
Grabs, Thomas [1 ]
Susnik, Janez [4 ]
Teutschbein, Claudia [1 ]
机构
[1] Uppsala Univ, Dept Earth Sci Air Water & Landscape Sci, Villavagen 16, S-75236 Uppsala, Sweden
[2] Univ Belgrade, Fac Civil Engn, Dept Hydraul & Environm Engn, Bulevar kralja Aleksandra 73, Belgrade 11000, Serbia
[3] Uppsala Univ, Dept Informat Technol, Div Comp Sci, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden
[4] IHE Delft Inst Water Educ, Land & Water Management Dept, Westvest 7, NL-2611 AX Delft, Netherlands
[5] Uppsala Univ, Dept Earth Sci Nat Resources & Sustainable Dev, Villavagen 16, S-75236 Uppsala, Sweden
关键词
Water-energy-food-ecosystem (WEFE) nexus; Data-driven methods; System identification; System control; State estimation; NEURAL-NETWORKS; PREDICTIVE CONTROL; TIME-SERIES; SYSTEMS; CONTROLLABILITY; TURBULENCE; REDUCTION; DYNAMICS;
D O I
10.1016/j.envsoft.2024.106182
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Attaining resource security in the water, energy, food, and ecosystem (WEFE) sectors, the WEFE nexus, is paramount. This necessitates the use of quantitative modelling, which presents many challenges, as this is a complex system acting at the intersection of the physical- and social sciences. However, as WEFE data is becoming more widely available, data-driven methods of modelling this system are becoming increasingly viable. Here, we discuss two main problems in WEFE nexus modelling: system identification and control. System identification uses Machine Learning algorithms to obtain dynamical models from data and have shown promise in many disciplines with similar characteristics as the nexus. Meanwhile, control algorithms manipulate a system to achieve objectives and are becoming instrumental in shaping nexus policy. Despite the promise of these algorithms, data-driven modelling is a vast and daunting field, and so here we provide an introductory overview of this field, with emphasis on nexus applications.
引用
收藏
页数:12
相关论文
共 138 条
[1]  
Abdel-Basset M., 2018, COMPUTATIONAL INTELL, P185, DOI [DOI 10.1016/B978-0-12-813314-9.00010-4, DOI 10.1016/B978-0-12-813314-9.00010-4.Z.B.T.-C.I]
[2]   Supervisory Model Predictive Control for Optimal Operation of a Greenhouse Indoor Environment Coping With Food-Energy-Water Nexus [J].
Achour, Yasmine ;
Ouammi, Ahmed ;
Zejli, Driss ;
Sayadi, Sami .
IEEE ACCESS, 2020, 8 :211562-211575
[3]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[4]   Artificial intelligence for water-energy nexus demand forecasting: a review [J].
Alhendi, Alya A. ;
Al-Sumaiti, Ameena S. ;
Elmay, Feruz K. ;
Wescaot, James ;
Kavousi-Fard, Abdollah ;
Heydarian-Forushani, Ehsan ;
Alhelou, Hassan Haes .
INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2022, 17 :730-744
[5]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[6]   Stability study of model predictive control in presence of undesirable factors [J].
Ansarpanahi, S. ;
Noor, S.B.M. ;
Marhaban, M.H. .
Journal of Applied Sciences, 2008, 8 (20) :3683-3689
[7]   Flood impacts on a water distribution network [J].
Arrighi, Chiara ;
Tarani, Fabio ;
Vicario, Enrico ;
Castelli, Fabio .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2017, 17 (12) :2109-2123
[8]   A Survey on Dimensionality Reduction Techniques for Time-Series Data [J].
Ashraf, Mohsena ;
Anowar, Farzana ;
Setu, Jahanggir H. ;
Chowdhury, Atiqul I. ;
Ahmed, Eshtiak ;
Islam, Ashraful ;
Al-Mamun, Abdullah .
IEEE ACCESS, 2023, 11 :42909-42923
[9]   Physics-informed dynamic mode decomposition [J].
Baddoo, Peter J. J. ;
Herrmann, Benjamin ;
McKeon, BeverleyJ. J. ;
Kutz, J. Nathan ;
Brunton, Steven L. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2271)
[10]  
Barros L.C., 2017, A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics, DOI [10.1007/978-3-662-53324-6, DOI 10.1007/978-3-662-53324-6]