Metamaterial thermopile beyond optical diffraction limit

被引:1
作者
Hirobe, Shoma [1 ]
Wredh, Simon [2 ]
Yang, Joel K. W.
Kubo, Wakana [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Elect Engn & Comp Sci, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
[2] Singapore Univ Technol & Design, Engn Prod Dev, Singapore 487372, Singapore
关键词
Metamaterial thermoelectric conversion; Thermopile; Specific detectivity; SILICON; THERMOMETRY;
D O I
10.1016/j.applthermaleng.2024.124080
中图分类号
O414.1 [热力学];
学科分类号
摘要
A radiation thermopile detector that converts radiant thermal energy into electricity is capable of remote temperature measurement without the need for a cooling system. However, due to its operating mechanism, its active area needs to be larger than the wavelengths of thermal radiation, i.e. >10 mu m. Here, we report calculation results of a metamaterial thermopile that operates beyond the optical diffraction limit. The metamaterial thermopile has a physical active area of only seven square microns but absorbs thermal energy from the environment equivalent to that of a significantly larger detector owing to the large absorption cross-section of the metamaterial elements. The metamaterial absorbs thermal radiation emitted from the surrounding media, creating a thermal gradient across a silicon nanowire, resulting in thermoelectric conversion. We numerically evaluated the responsivity and specific detectivity of the metamaterial thermopile at temperature ranging from 273 to 373 K. The calculated specific detectivity of the metamaterial thermopile was 2.38 x 10(7) (cm center dot Hz(1/2)center dot W-1/2). This metamaterial thermopile that enables highly miniaturized thermometry sensors surpassing the optical diffraction limit, opens new avenues for microscale temperature measurement, leading to new discoveries in physics and thermodynamics.
引用
收藏
页数:6
相关论文
共 44 条
  • [1] Asakura T, 2022, arXiv
  • [2] Micro-thermocouple on nano-membrane: thermometer for nanoscale measurements
    Balcytis, Armandas
    Ryu, Meguya
    Juodkazis, Saulius
    Morikawa, Junko
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [3] Study on a High Performance MEMS Infrared Thermopile Detector
    Bao, Aida
    Lei, Cheng
    Mao, Haiyang
    Li, Ruirui
    Guan, Yihao
    [J]. MICROMACHINES, 2019, 10 (12)
  • [4] Thermometry at the nanoscale
    Brites, Carlos D. S.
    Lima, Patricia P.
    Silva, Nuno J. O.
    Millan, Angel
    Amaral, Vitor S.
    Palacio, Fernando
    Carlos, Luis D.
    [J]. NANOSCALE, 2012, 4 (16) : 4799 - 4829
  • [5] Fully quantitative characterization of CMOS-MEMS polysilicon/titanium thermopile infrared sensors
    Chen, Chung-Nan
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2012, 161 (01): : 892 - 900
  • [6] Chu P, 2023, IEEE Sens. J
  • [7] Simulation of the dark current of quantum-well infrared photodetectors
    Claro, M. S.
    Fernandes, F. M.
    da Silva, E. C. F.
    Quivy, A. A.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 104 : 232 - 239
  • [8] Daniel Chris, 2022, Journal of Physics: Conference Series, V2178, DOI 10.1088/1742-6596/2178/1/012004
  • [9] Plasmonic Photodetectors
    Dorodnyy, Alexander
    Salamin, Yannick
    Ma, Ping
    Plestina, Jelena Vukajiovic
    Lassaline, Nolan
    Mikulik, Dmitry
    Romero-Gomez, Pablo
    Fontcuberta i Morral, Anna
    Leuthold, Juerg
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)
  • [10] Diamond quantum thermometry: from foundations to applications
    Fujiwara, Masazumi
    Shikano, Yutaka
    [J]. NANOTECHNOLOGY, 2021, 32 (48)