A Frequency Domain Auxiliary Network for Image Retrieval

被引:0
作者
Zhang, Zhiming [1 ,2 ]
Liu, Jiao [3 ]
Dong, Yongfeng [1 ,2 ]
Zhang, Jun [1 ,2 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[2] Hebei Prov Key Lab Big Data Calculat, Tianjin 300401, Peoples R China
[3] Nankai Univ, Coll Comp Sci, Tianjin 300350, Peoples R China
关键词
Feature extraction; Codes; Semantics; Frequency-domain analysis; Data augmentation; Image retrieval; Training; Deep hashing; data augmentation; Fourier transform; image retrieval;
D O I
10.1109/LSP.2024.3456632
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image retrieval aims to find the most semantically similar images in the database. Existing deep hash-based retrieval algorithms utilize data augmentation strategies thus generating generalized hash codes. However, simple data augmentation only improves the accuracy of hash codes from the perspective of sample diversity, without fully utilizing the inherent characteristics of the images. In this letter, we explore the frequency domain information of images and propose a Frequency Domain Auxiliary Network (FDANet) for deep hash retrieval. To capture frequency domain information that can cope with image transformations, we develop the spectrum enhancement module (SEM) in FDANet. The SEM utilizes Fourier transform techniques to extract the amplitude component that can reflect the low-level statistics of the image. Then, leveraging the extracted amplitude components, the retrieval network enhances its perception of regions undergoing relative changes in the original spatial domain. Experiments on several image retrieval benchmarks demonstrate that our method outperforms other state-of-the-art hash algorithms in terms of performance on the test metrics.
引用
收藏
页码:2425 / 2429
页数:5
相关论文
共 27 条
  • [1] Deep Cauchy Hashing for Hamming Space Retrieval
    Cao, Yue
    Long, Mingsheng
    Liu, Bin
    Wang, Jianmin
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1229 - 1237
  • [2] Cao Y, 2016, AAAI CONF ARTIF INTE, P3457
  • [3] HashNet: Deep Learning to Hash by Continuation
    Cao, Zhangjie
    Long, Mingsheng
    Wang, Jianmin
    Yu, Philip S.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5609 - 5618
  • [4] Fan LX, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P825
  • [5] Hoe JT, 2021, ADV NEUR IN, V34
  • [6] Unsupervised Feature Representation Learning for Domain-generalized Cross-domain Image Retrieval
    Hu, Conghui
    Zhang, Can
    Lee, Gim Hee
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10982 - 10991
  • [7] Feature Representation Learning for Unsupervised Cross-Domain Image Retrieval
    Hu, Conghui
    Lee, Gim Hee
    [J]. COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 529 - 544
  • [8] Deep Hash Distillation for Image Retrieval
    Jang, Young Kyun
    Gu, Geonmo
    Ko, Byungsoo
    Kang, Isaac
    Cho, Nam Ik
    [J]. COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 354 - 371
  • [9] Deep Clustering and Block Hashing Network for Face Image Retrieval
    Jang, Young Kyun
    Jeong, Dong-ju
    Lee, Seok Hee
    Cho, Nam Ik
    [J]. COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 325 - 339
  • [10] Deep Discrete Supervised Hashing
    Jiang, Qing-Yuan
    Cui, Xue
    Li, Wu-Jun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (12) : 5996 - 6009