Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach

被引:1
作者
Le, Elizabeth P. V. [1 ]
Wong, Mark Y. Z. [1 ]
Rundo, Leonardo [2 ,3 ,4 ]
Tarkin, Jason M. [1 ]
Evans, Nicholas R. [5 ]
Weir-McCall, Jonathan R. [2 ,6 ]
Chowdhury, Mohammed M. [7 ]
Coughlin, Patrick A. [13 ]
Pavey, Holly [8 ]
Zaccagna, Fulvio [2 ,9 ,10 ]
Wall, Chris [1 ]
Sriranjan, Rouchelle [1 ]
Corovic, Andrej [1 ]
Huang, Yuan [1 ,2 ,11 ]
Warburton, Elizabeth A. [5 ]
Sala, Evis [14 ,15 ]
Roberts, Michael [1 ,11 ,12 ]
Schonlieb, Carola-Bibiane [11 ]
Rudd, James H. F. [1 ,11 ]
机构
[1] Univ Cambridge, Dept Med, Cambridge, England
[2] Univ Cambridge, Dept Radiol, Cambridge, England
[3] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge, England
[4] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, Fisciano, Italy
[5] Univ Cambridge, Dept Clin Neurosci, Cambridge, England
[6] Royal Papworth Hosp, Dept Radiol, Cambridge, England
[7] Univ Cambridge, Dept Surg, Div Vasc Surg, Cambridge, England
[8] Univ Cambridge, Div Expt Med & Immunotherapeut, Cambridge, England
[9] Cambridge Univ Hosp NHS Fdn Trust, Dept Imaging, Cambridge Biomed Campus, Cambridge, England
[10] Univ Oxford, Radcliffe Dept Med, Invest Med Div, Oxford, England
[11] Univ Cambridge, EPSRC Ctr Math Imaging Healthcare, Cambridge, England
[12] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[13] Univ Leeds, Dept Vasc Surg, Leeds, England
[14] Univ Cattolica Sacro Cuore, Dipartimento Sci Radiol & Ematol, Rome, Italy
[15] Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini Radioterapia Oncol, Rome, Italy
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
AI; Stroke; Radiomics; Machine learning; Carotid artery; Coronary calcium; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; STROKE;
D O I
10.1016/j.ejro.2024.100594
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess radiomics and deep learning (DL) methods in identifying symptomatic Carotid Artery Disease (CAD) from carotid CT angiography (CTA) images. We further compare the performance of these novel methods to the conventional calcium score. Methods: Carotid CT angiography (CTA) images from symptomatic patients (ischaemic stroke/transient ischaemic attack within the last 3 months) and asymptomatic patients were analysed. Carotid arteries were classified into culprit, non-culprit and asymptomatic. The calcium score was assessed using the Agatston method. 93 radiomic features were extracted from regions-of-interest drawn on 14 consecutive CTA slices. For DL, convolutional neural networks (CNNs) with and without transfer learning were trained directly on CTA slices. Predictive performance was assessed over 5-fold cross validated AUC scores. SHAP and GRAD-CAM algorithms were used for explainability. Results: 132 carotid arteries were analysed (41 culprit, 41 non-culprit, and 50 asymptomatic). For asymptomatic vs symptomatic arteries, radiomics attained a mean AUC of 0.96(+/- +/- 0.02), followed by DL 0.86(+/- +/- 0.06) and then calcium 0.79(+/- +/- 0.08). For culprit vs non-culprit arteries, radiomics achieved a mean AUC of 0.75(+/- +/- 0.09), followed by DL 0.67(+/- +/- 0.10) and then calcium 0.60(+/- +/- 0.02). For multi-class classification, the mean AUCs were 0.95(+/- +/- 0.07), 0.79(+/- +/- 0.05), and 0.71(+/- +/- 0.07) for radiomics, DL and calcium, respectively. Explainability revealed consistent patterns in the most important radiomic features. Conclusions: Our study highlights the potential of novel image analysis techniques in extracting quantitative information beyond calcification in the identification of CAD. Though further work is required, the transition of these novel techniques into clinical practice may eventually facilitate better stroke risk stratification.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] QUANTIFICATION OF CORONARY-ARTERY CALCIUM USING ULTRAFAST COMPUTED-TOMOGRAPHY
    AGATSTON, AS
    JANOWITZ, WR
    HILDNER, FJ
    ZUSMER, NR
    VIAMONTE, M
    DETRANO, R
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1990, 15 (04) : 827 - 832
  • [2] Carotid Artery Calcification: What We Know So Far
    Ahmed, Madeeha
    McPherson, Regina
    Abruzzo, Alexandra
    Thomas, Sneha E.
    Gorantla, Vasavi Rakesh
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (10)
  • [3] Parameter tuning or default values? An empirical investigation in search-based software engineering
    Arcuri, Andrea
    Fraser, Gordon
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2013, 18 (03) : 594 - 623
  • [4] Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis
    Barnett, HJM
    Taylor, W
    Eliasziw, M
    Fox, AJ
    Ferguson, GG
    Haynes, RB
    Rankin, RN
    Clagett, GP
    Hachinski, VC
    Sackett, DL
    Thorpe, KE
    Meldrum, HE
    Spence, JD
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1998, 339 (20) : 1415 - 1425
  • [5] Baum E, 1987, Neural Inf. Process. Syst.
  • [6] Early Detection and Treatment of the Vulnerable Coronary Plaque: Can We Prevent Acute Coronary Syndromes?
    Bom, Michiel J.
    van der Heijden, Dirk J.
    Kedhi, Elvin
    van der Heyden, Jan
    Meuwissen, Martijn
    Knaapen, Paul
    Timmer, Stefan A. J.
    van Royen, Niels
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (05)
  • [7] Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events
    Bos, Daniel
    Arshi, Banafsheh
    van den Bouwhuijsen, Quirijn J. A.
    Ikram, M. Kamran
    Selwaness, Mariana
    Vernooij, Meike W.
    Kavousi, Maryam
    van der Lugt, Aad
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (11) : 1426 - 1435
  • [8] Artificial intelligence in computed tomography plaque characterization: A review
    Cau, Riccardo
    Flanders, Adam
    Mannelli, Lorenzo
    Politi, Carola
    Faa, Gavino
    Suri, Jasjit S.
    Saba, Luca
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2021, 140
  • [9] Deep Learning: A Primer for Radiologists
    Chartrand, Gabriel
    Cheng, Phillip M.
    Vorontsov, Eugene
    Drozdzal, Michal
    Turcotte, Simon
    Pal, Christopher J.
    Kadoury, Samuel
    Tang, An
    [J]. RADIOGRAPHICS, 2017, 37 (07) : 2113 - 2131
  • [10] Dual-Tracer Positron-Emission Tomography for Identification of Culprit Carotid Plaques and Pathophysiology In Vivo
    Evans, Nicholas R.
    Tarkin, Jason M.
    Chowdhury, Mohammed M.
    Le Elizabeth, P., V
    Coughlin, Patrick A.
    Rudd, James H. F.
    Warburton, Elizabeth A.
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2020, 13 (03) : E009539