Recent advances in imaging and artificial intelligence (AI) for quantitative assessment of multiple myeloma

被引:0
|
作者
Liu, Yongshun [1 ]
Huang, Wenpeng [1 ]
Yang, Yihan [1 ]
Cai, Weibo [2 ]
Sun, Zhaonan [3 ]
机构
[1] Peking Univ First Hosp, Dept Nucl Med, Beijing 100034, Peoples R China
[2] Univ Wisconsin Madison, Dept Radiol & Med Phys, K6-562 Clin Sci Ctr,600 Highland Ave, Madison, WI 53705 USA
[3] Peking Univ First Hosp, Dept Med Imaging, 8 Xishiku St, Beijing 100034, Peoples R China
来源
AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING | 2024年 / 14卷 / 04期
关键词
Multiple myeloma; artificial intelligence; computed tomography; positron emission tomography; magnetic resonance imag- ing; quantitative evaluation; radiomics; WHOLE-BODY MRI; DOSE COMPUTED-TOMOGRAPHY; POSITRON-EMISSION-TOMOGRAPHY; BONE-MARROW INFILTRATION; DIFFUSION-WEIGHTED MRI; CONTRAST-ENHANCED MRI; F-18-FDG PET/CT; TREATMENT RESPONSE; DIAGNOSTIC-VALUE; STAGING SYSTEM;
D O I
10.62347/NLLV9295
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Multiple myeloma (MM) is a malignant blood disease, but there have been significant improvements in the prognosis due to advancements in quantitative assessment and targeted therapy in recent years. The quantitative assessment of MM bone marrow infiltration and prognosis prediction is influenced by imaging and artificial intelligence (AI) quantitative parameters. At present, the primary imaging methods include computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These methods are now crucial for diagnosing MM and evaluating myeloma cell infiltration, extramedullary disease, treatment effectiveness, and prognosis. Furthermore, the utilization of AI, specifically incorporating machine learning and radiomics, shows great potential in the field of diagnosing MM and distinguishing between MM and lytic metastases. This review discusses the advancements in imaging methods, including CT, MRI, and PET/CT, as well as AI for quantitatively assessing MM. We have summarized the key concepts, advantages, limitations, and diagnostic performance of each technology. Finally, we discussed the challenges related to clinical implementation and presented our views on advancing this field, with the aim of providing guidance for future research.
引用
收藏
页码:208 / 229
页数:22
相关论文
共 50 条
  • [1] Overview and recent advances in PET/CT imaging in lymphoma and multiple myeloma
    Zanoni, Lucia
    Mattana, Francesco
    Calabro, Diletta
    Paccagnella, Andrea
    Broccoli, Alessandro
    Nanni, Cristina
    Fanti, Stefano
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 141
  • [2] Multiple Myeloma Guidelines and Their Recent Updates: Implications for Imaging
    Mosebach, Jennifer
    Thierjung, Heidi
    Schlemmer, Heinz-Peter
    Delorme, Stefan
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (11): : 998 - 1009
  • [3] Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity?
    Tagliafico, Alberto Stefano
    Dominietto, Alida
    Belgioia, Liliana
    Campi, Cristina
    Schenone, Daniela
    Piana, Michele
    MEDICINA-LITHUANIA, 2021, 57 (02): : 1 - 10
  • [4] Artificial intelligence (AI) in diagnostic imaging
    Braunschweig, Rainer
    Kildal, Daniela
    Janka, Rolf
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (07): : 664 - 670
  • [5] Diagnostic Innovations: Advances in imaging techniques for diagnosis and follow-up of multiple myeloma
    Talarico, M.
    Barbato, S.
    Cattabriga, A.
    Sacchetti, I.
    Manzato, E.
    Restuccia, R.
    Masci, S.
    Bigi, F.
    Puppi, M.
    Iezza, M.
    Rizzello, I.
    Mancuso, K.
    Pantani, L.
    Tacchetti, P.
    Nanni, C.
    Cavo, M.
    Zamagni, E.
    JOURNAL OF BONE ONCOLOGY, 2025, 51
  • [6] The recent advances in the approach of artificial intelligence (AI) towards drug discovery
    Khan, Mahroza Kanwal
    Raza, Mohsin
    Shahbaz, Muhammad
    Hussain, Iftikhar
    Khan, Muhammad Farooq
    Xie, Zhongjian
    Shah, Syed Shoaib Ahmad
    Tareen, Ayesha Khan
    Bashir, Zoobia
    Khan, Karim
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [7] Recent Advances in Explainable Artificial Intelligence for Magnetic Resonance Imaging
    Qian, Jinzhao
    Li, Hailong
    Wang, Junqi
    He, Lili
    DIAGNOSTICS, 2023, 13 (09)
  • [8] Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art
    Manco, Luigi
    Albano, Domenico
    Urso, Luca
    Arnaboldi, Mattia
    Castellani, Massimo
    Florimonte, Luigia
    Guidi, Gabriele
    Turra, Alessandro
    Castello, Angelo
    Panareo, Stefano
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (24)
  • [9] The contribution of artificial intelligence (AI) subsequent to the processing of thoracic imaging
    Grenier, P. A.
    Brun, A. L.
    Mellot, F.
    REVUE DES MALADIES RESPIRATOIRES, 2024, 41 (02) : 110 - 126
  • [10] Recent advances in multiple myeloma
    Yutaka Kohgo
    International Journal of Clinical Oncology, 2015, 20 : 411 - 412