Recent advances in imaging and artificial intelligence (AI) for quantitative assessment of multiple myeloma

被引:0
作者
Liu, Yongshun [1 ]
Huang, Wenpeng [1 ]
Yang, Yihan [1 ]
Cai, Weibo [2 ]
Sun, Zhaonan [3 ]
机构
[1] Peking Univ First Hosp, Dept Nucl Med, Beijing 100034, Peoples R China
[2] Univ Wisconsin Madison, Dept Radiol & Med Phys, K6-562 Clin Sci Ctr,600 Highland Ave, Madison, WI 53705 USA
[3] Peking Univ First Hosp, Dept Med Imaging, 8 Xishiku St, Beijing 100034, Peoples R China
关键词
Multiple myeloma; artificial intelligence; computed tomography; positron emission tomography; magnetic resonance imag- ing; quantitative evaluation; radiomics; WHOLE-BODY MRI; DOSE COMPUTED-TOMOGRAPHY; POSITRON-EMISSION-TOMOGRAPHY; BONE-MARROW INFILTRATION; DIFFUSION-WEIGHTED MRI; CONTRAST-ENHANCED MRI; F-18-FDG PET/CT; TREATMENT RESPONSE; DIAGNOSTIC-VALUE; STAGING SYSTEM;
D O I
10.62347/NLLV9295
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Multiple myeloma (MM) is a malignant blood disease, but there have been significant improvements in the prognosis due to advancements in quantitative assessment and targeted therapy in recent years. The quantitative assessment of MM bone marrow infiltration and prognosis prediction is influenced by imaging and artificial intelligence (AI) quantitative parameters. At present, the primary imaging methods include computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). These methods are now crucial for diagnosing MM and evaluating myeloma cell infiltration, extramedullary disease, treatment effectiveness, and prognosis. Furthermore, the utilization of AI, specifically incorporating machine learning and radiomics, shows great potential in the field of diagnosing MM and distinguishing between MM and lytic metastases. This review discusses the advancements in imaging methods, including CT, MRI, and PET/CT, as well as AI for quantitatively assessing MM. We have summarized the key concepts, advantages, limitations, and diagnostic performance of each technology. Finally, we discussed the challenges related to clinical implementation and presented our views on advancing this field, with the aim of providing guidance for future research.
引用
收藏
页码:208 / 229
页数:22
相关论文
共 144 条
[1]   Impact of coronavirus disease 2019 (COVID-19) emergency on Italian radiologists: a national survey [J].
Albano, Domenico ;
Bruno, Antonio ;
Bruno, Federico ;
Calandri, Marco ;
Caruso, Damiano ;
Clemente, Alfredo ;
Coppolino, Pietro ;
Cozzi, Diletta ;
De Robertis, Riccardo ;
Gentili, Francesco ;
Grazzini, Irene ;
Jannone, Maria Laura ;
Liguori, Carlo ;
Natella, Raffaele ;
Pace, Genny ;
Posa, Alessandro ;
Scalise, Paola ;
Accarino, Bruno ;
Bibbolino, Corrado ;
Barile, Antonio ;
Grassi, Roberto ;
Messina, Carmelo .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6635-6644
[2]   Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection [J].
Allegra, Alessandro ;
Tonacci, Alessandro ;
Sciaccotta, Raffaele ;
Genovese, Sara ;
Musolino, Caterina ;
Pioggia, Giovanni ;
Gangemi, Sebastiano .
CANCERS, 2022, 14 (03)
[3]   Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI [J].
Almeida, Silvia D. ;
Santinha, Joao ;
Oliveira, Francisco P. M. ;
Ip, Joana ;
Lisitskaya, Maria ;
Lourenco, Joao ;
Uysal, Aycan ;
Matos, Celso ;
Joao, Cristina ;
Papanikolaou, Nikolaos .
CANCER IMAGING, 2020, 20 (01)
[4]   The role of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in assessment of complex invasive fungal disease and opportunistic co-infections in patients with acute leukemia prior to allogeneic hematopoietic cell transplant [J].
Anthony, Longhitano ;
Ramin, Alipour ;
Amit, Khot ;
Ashish, Bajel ;
Phillip, Antippa ;
Monica, Slavin ;
Karin, Thursky .
TRANSPLANT INFECTIOUS DISEASE, 2021, 23 (03)
[5]   Role of imaging in multiple myeloma [J].
Baffour, Francis I. ;
Glazebrook, Katrina N. ;
Kumar, Shaji K. ;
Broski, Stephen M. .
AMERICAN JOURNAL OF HEMATOLOGY, 2020, 95 (08) :966-977
[6]   Machine Learning-Based Overall Survival Prediction of Elderly Patients With Multiple Myeloma From Multicentre Real-Life Data [J].
Bao, Li ;
Wang, Yu-tong ;
Zhuang, Jun-ling ;
Liu, Ai-jun ;
Dong, Yu-jun ;
Chu, Bin ;
Chen, Xiao-huan ;
Lu, Min-qiu ;
Shi, Lei ;
Gao, Shan ;
Fang, Li-juan ;
Xiang, Qiu-qing ;
Ding, Yue-hua .
FRONTIERS IN ONCOLOGY, 2022, 12
[7]   Quantitative bone marrow magnetic resonance imaging through apparent diffusion coefficient and fat fraction in multiple myeloma patients [J].
Berardo, Sara ;
Sukhovei, Lidiia ;
Andorno, Silvano ;
Carriero, Alessandro ;
Stecco, Alessandro .
RADIOLOGIA MEDICA, 2021, 126 (03) :445-452
[8]   Immunotherapy for the treatment of multiple myeloma [J].
Boussi, Leora S. ;
Avigan, Zachary M. ;
Rosenblatt, Jacalyn .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[9]   Quantitative and qualitative assessment of plasma cell dyscrasias in dual-layer spectral CT [J].
Brandelik, S. C. ;
Skornitzke, S. ;
Mokry, T. ;
Sauer, S. ;
Stiller, W. ;
Nattenmuller, J. ;
Kauczor, H. U. ;
Weber, T. F. ;
Do, T. D. .
EUROPEAN RADIOLOGY, 2021, 31 (10) :7664-7673
[10]   Diagnostic utility of whole body Dixon MRI in multiple myeloma: A multi-reader study [J].
Bray, Timothy J. P. ;
Singh, Saurabh ;
Latifoltojar, Arash ;
Rajesparan, Kannan ;
Rahman, Farzana ;
Narayanan, Priya ;
Naaseri, Sahar ;
Lopes, Andre ;
Bainbridge, Alan ;
Punwani, Shonit ;
Hall-Craggs, Margaret A. .
PLOS ONE, 2017, 12 (07)