Uncertainty Estimation and Out-of-Distribution Detection for Deep Learning-Based Image Reconstruction Using the Local Lipschitz

被引:1
作者
Bhutto, Danyal F. [1 ,2 ]
Zhu, Bo [2 ]
Liu, Jeremiah Z. [3 ,4 ]
Koonjoo, Neha [2 ,5 ]
Li, Hongwei B. [2 ,5 ]
Rosen, Bruce R. [2 ,5 ]
Rosen, Matthew S. [2 ,5 ,6 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Charlestown, MA 02129 USA
[3] Harvard Univ, Dept Biostat, Cambridge, MA 02115 USA
[4] Google Res, Mountain View, CA 94043 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Image reconstruction; Uncertainty; Magnetic resonance imaging; Biomedical imaging; Training; Estimation; Robustness; Deep learning; computed tomography; uncertainty estimation; local lipschitz; Monte-Carlo dropout; deep ensemble; mean variance estimation network; NEURAL-NETWORKS;
D O I
10.1109/JBHI.2024.3404883
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate image reconstruction is at the heart of diagnostics in medical imaging. Supervised deep learning-based approaches have been investigated for solving inverse problems including image reconstruction. However, these trained models encounter unseen data distributions that are widely shifted from training data during deployment. Therefore, it is essential to assess whether a given input falls within the training data distribution. Current uncertainty estimation approaches focus on providing an uncertainty map to radiologists, rather than assessing the training distribution fit. In this work, we propose a method based on the local Lipschitz metric to distinguish out-of-distribution images from in-distribution with an area under the curve of 99.94% for True Positive Rate versus False Positive Rate. We demonstrate a very strong relationship between the local Lipschitz value and mean absolute error (MAE), supported by a Spearman's rank correlation coefficient of 0.8475, to determine an uncertainty estimation threshold for optimal performance. Through the identification of false positives, we demonstrate the local Lipschitz and MAE relationship can guide data augmentation and reduce uncertainty. Our study was validated using the AUTOMAP architecture for sensor-to-image Magnetic Resonance Imaging (MRI) reconstruction. We demonstrate our approach outperforms baseline techniques of Monte-Carlo dropout and deep ensembles as well as the state-of-the-art Mean Variance Estimation network approach. We expand our application scope to MRI denoising and Computed Tomography sparse-to-full view reconstructions using UNET architectures. We show our approach is applicable to various architectures and applications, especially in medical imaging, where preserving diagnostic accuracy of reconstructed images remains paramount.
引用
收藏
页码:5422 / 5434
页数:13
相关论文
共 51 条
[11]  
Cao TS, 2020, Arxiv, DOI arXiv:2007.04250
[12]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[13]   Compression Artifacts Reduction by a Deep Convolutional Network [J].
Dong, Chao ;
Deng, Yubin ;
Loy, Chen Change ;
Tang, Xiaoou .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :576-584
[14]   MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI [J].
Fan, Qiuyun ;
Witzel, Thomas ;
Nummenmaa, Aapo ;
Van Dijk, Koene R. A. ;
Van Horn, John D. ;
Drews, Michelle K. ;
Somerville, Leah H. ;
Sheridan, Margaret A. ;
Santillana, Rosario M. ;
Snyder, Jenna ;
Hedden, Trey ;
Shaw, Emily E. ;
Hollinshead, Marisa O. ;
Renvall, Ville ;
Zanzonico, Roberta ;
Keil, Boris ;
Cauley, Stephen ;
Polimeni, Jonathan R. ;
Tisdall, Dylan ;
Buckner, Randy L. ;
Wedeen, Van J. ;
Wald, Lawrence L. ;
Toga, Arthur W. ;
Rosen, Bruce R. .
NEUROIMAGE, 2016, 124 :1108-1114
[15]  
Fazlyab M, 2019, ADV NEUR IN, V32
[16]  
Gal Y, 2016, PR MACH LEARN RES, V48
[17]  
Gottschling NM, 2024, Arxiv, DOI [arXiv:2001.01258, 10.48550/ARXIV.2001.01258]
[18]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[19]   Some Investigations on Robustness of Deep Learning in Limited Angle Tomography [J].
Huang, Yixing ;
Wuerfl, Tobias ;
Breininger, Katharina ;
Liu, Ling ;
Lauritsch, Guenter ;
Maier, Andreas .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :145-153
[20]   Deep Convolutional Neural Network for Inverse Problems in Imaging [J].
Jin, Kyong Hwan ;
McCann, Michael T. ;
Froustey, Emmanuel ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4509-4522