Logarithmic Sobolev Inequalities on Homogeneous Spaces

被引:0
作者
Gordina, Maria [1 ]
Luo, Liangbing [2 ,3 ]
机构
[1] Univ Connecticut Storrs, Dept Math, Storrs, CT 06269 USA
[2] Lehigh Univ Bethlehem, Dept Math, Bethlehem, PA 18015 USA
[3] Queens Univ, Dept Math & Stat, Kingston, ON K7L3N6, Canada
关键词
HEAT KERNEL; HEISENBERG; MANIFOLDS; GRADIENT; BOUNDS;
D O I
10.1093/imrn/rnae205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider sub-Riemannian manifolds which are homogeneous spaces equipped with a sub-Riemannian structure induced by a transitive action by a Lie group. Then the corresponding sub-Laplacian is not an elliptic but a hypoelliptic operator. We study logarithmic Sobolev inequalities with respect to the hypoelliptic heat kernel measure on such spaces. We show that the logarithmic Sobolev constant can be chosen to depend only on the Lie group acting transitively on such a space but the constant is independent of the action of its isotropy group. This approach allows us to track the dependence of the logarithmic Sobolev constant on the geometry of the underlying space, in particular we show that the constant is independent of the dimension of the underlying spaces in several examples.
引用
收藏
页码:13432 / 13460
页数:29
相关论文
共 53 条
[1]  
Agrachev A, 2020, Cambridge Studies in Advanced Mathematics. From the Hamiltonian viewpoint, V181
[2]  
Bakry D., 2014, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V348
[3]   On gradient bounds for the heat kernel on the Heisenberg group [J].
Bakry, Dominique ;
Baudoin, Fabrice ;
Bonnefont, Michel ;
Chafai, Djalil .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :1905-1938
[4]  
Baudoin F., 2024, ARXIV
[5]  
Baudoin F., 2022, ARXIV
[6]   Ornstein-Uhlenbeck processes on Lie groups [J].
Baudoin, Fabrice ;
Hairer, Martin ;
Teichmann, Josef .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :877-890
[7]   Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries [J].
Baudoin, Fabrice ;
Garofalo, Nicola .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (01) :151-219
[8]   Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2646-2676
[9]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[10]  
Bonnefont M., 2020, Ann. Fac. Sci. Toulouse, V29, P335, DOI DOI 10.5802/AFST.1633