Sparse Fuzzy C-Means Clustering with Lasso Penalty

被引:1
|
作者
Parveen, Shazia [1 ]
Yang, Miin-Shen [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan 32023, Taiwan
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 09期
关键词
clustering; fuzzy c-means (FCM); sparse FCM (S-FCM); lasso; S-FCM-Lasso; evaluation measures; SELECTION; ALGORITHMS;
D O I
10.3390/sym16091208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Effective fuzzy c-means clustering algorithms for data clustering problems
    Kannan, S. R.
    Ramathilagam, S.
    Chung, P. C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (07) : 6292 - 6300
  • [32] Fuzzy model generation using Subtractive and Fuzzy C-Means clustering
    Lalit Mohan Goyal
    Mamta Mittal
    Jasleen Kaur Sethi
    CSI Transactions on ICT, 2016, 4 (2-4) : 129 - 133
  • [33] Effect of cluster size distribution on clustering: a comparative study of k-means and fuzzy c-means clustering
    Zhou, Kaile
    Yang, Shanlin
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (01) : 455 - 466
  • [34] Generalized Fuzzy c-Means Clustering and Its Theoretical Properties
    Kanzawa, Yuchi
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 243 - 254
  • [35] Geometrically guided Fuzzy C-Means clustering of multispectral images
    Noordam, JC
    van der Broek, WHAM
    Buydens, LMC
    MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 161 - 166
  • [36] Extended fuzzy c-means: an analyzing data clustering problems
    S. Ramathilagam
    R. Devi
    S. R. Kannan
    Cluster Computing, 2013, 16 : 389 - 406
  • [37] Background Removal by Modified Fuzzy C-Means Clustering Algorithm
    Pugazhenthi, A.
    Sreenivasulu, G.
    Indhirani, A.
    2015 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICETECH), 2015, : 104 - 106
  • [38] Regularized fuzzy c-means method for brain tissue clustering
    Hou, Z.
    Qian, W.
    Huang, S.
    Hu, Q.
    Nowinski, W. L.
    PATTERN RECOGNITION LETTERS, 2007, 28 (13) : 1788 - 1794
  • [39] POSSIBILISTIC FUZZY C-MEANS CLUSTERING ON MEDICAL DIAGNOSTIC SYSTEMS
    Simhachalam, B.
    Ganesan, G.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1125 - 1129
  • [40] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573