Gait Analysis Using Single Waist-Mounted RGB-D Camera and Dual Foot-Mounted IMUs

被引:1
作者
Cong Dang, Duc [1 ]
Tuan Pham, Thanh [1 ]
Suh, Young Soo [1 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep learning; Cameras; Trajectory; Semantic segmentation; Accuracy; Position measurement; Kalman filters; Legged locomotion; gait analysis; IMUs; Kalman filter; RGB-D camera; SYSTEM;
D O I
10.1109/ACCESS.2024.3459964
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate estimation of dual walking trajectories remains a challenge in human gait tracking systems due to limitations in sensor precision and data integration methods. To address these issues, this paper presents a novel human gait tracking system that integrates a downward-looking waist-mounted red-green-blue-depth (RGB-D) camera with two inertial measurement units (IMUs) mounted on each foot. Our approach utilizes a fully convolutional network (FCN) for precise foot detection from RGB-D images. The positions of both feet are then computed using the detected foot and the camera's rotation matrix relative to the floor plane. These position estimates are incorporated into a Kalman filter, with a quadratic optimization-based smoothing method applied to improve accuracy. Experimental results demonstrate a significant improvement in dual trajectory estimation, achieving a root mean square error (RMSE) of 3.3 cm in stride length estimation. This system enhances the accuracy and reliability of gait analysis, effectively addressing the limitations of existing methods.
引用
收藏
页码:133557 / 133568
页数:12
相关论文
共 40 条
  • [1] Ahmed A, 2018, IEEE INT CONF ROBOT, P4614, DOI 10.1109/ICRA.2018.8460871
  • [2] Comparison of Deep-Learning-Based Segmentation Models: Using Top View Person Images
    Ahmed, Imran
    Ahmad, Misbah
    Khan, Fakhri Alam
    Asif, Muhammad
    [J]. IEEE ACCESS, 2020, 8 : 136361 - 136373
  • [3] A High-Precision and Low-Cost IMU-Based Indoor Pedestrian Positioning Technique
    Bai, Nan
    Tian, Yuan
    Liu, Ye
    Yuan, Zhengxi
    Xiao, Zhuoling
    Zhou, Jun
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (12) : 6716 - 6726
  • [5] Creamer G, 1996, J ASTRONAUT SCI, V44, P357
  • [6] Visual Inertial Odometry-Based Gait Analysis Using Waist-Attached RGB-D Camera and Inertial Sensors
    Dang, Duc Cong
    Suh, Young Soo
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (03) : 2539 - 2549
  • [7] Gait Analysis in Parkinson's Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring
    di Biase, Lazzaro
    Di Santo, Alessandro
    Caminiti, Maria Letizia
    De Liso, Alfredo
    Shah, Syed Ahmar
    Ricci, Lorenzo
    Di Lazzaro, Vincenzo
    [J]. SENSORS, 2020, 20 (12) : 1
  • [8] Eisert P., 2008, P IEEE C COMP VIS PA, P1
  • [9] Everingham M., The PASCAL visual object classes challenge 2007 (VOC2007) results
  • [10] Monitoring of Gait Parameters in Post-Stroke Individuals: A Feasibility Study Using RGB-D Sensors
    Ferraris, Claudia
    Cimolin, Veronica
    Vismara, Luca
    Votta, Valerio
    Amprimo, Gianluca
    Cremascoli, Riccardo
    Galli, Manuela
    Nerino, Roberto
    Mauro, Alessandro
    Priano, Lorenzo
    [J]. SENSORS, 2021, 21 (17)