The future of bone regeneration: Artificial intelligence in biomaterials discovery

被引:11
作者
Fan, Jinfei [1 ,6 ]
Xu, Jiazhen [1 ,2 ,4 ]
Wen, Xiaobo [1 ,2 ,3 ]
Sun, Li [1 ,2 ,4 ]
Xiu, Yutao [1 ,2 ,4 ]
Zhang, Zongying [1 ,2 ,4 ]
Liu, Ting [1 ,2 ,3 ]
Zhang, Daijun [6 ]
Wang, Pan [7 ]
Xing, Dongming [1 ,2 ,4 ,5 ,6 ]
机构
[1] Qingdao Univ, Affiliated Hosp, Qingdao, Peoples R China
[2] Qingdao Univ, Qingdao Canc Inst, Qingdao, Peoples R China
[3] Qingdao Univ, Sch Pharm, Qingdao, Peoples R China
[4] Qingdao Univ, Sch Basic Med, Qingdao, Peoples R China
[5] Tsinghua Univ, Sch Life Sci, Beijing, Peoples R China
[6] Qingdao Univ, Med Coll, Qingdao, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Thorac Surg,Canc Hosp, Beijing 100021, Peoples R China
关键词
Bone regeneration; Biomaterial; Artificial intelligence; Machine learning; DATABASE; DEGRADATION; DESCRIPTORS; SCAFFOLDS; MODELS; CLASSIFICATION; NANOMATERIALS; PREDICTION; MOLECULES; ALLOYS;
D O I
10.1016/j.mtcomm.2024.109982
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bone defect is a highly prevalent disorder. Given that many people, especially the elderly are suffering from it, there's an urgent need for the development of bone tissue regeneration engineering. Multifarious artificial bone substitute biomaterials such as metals, bioceramics and polymers have been favored over autologous and allogeneic bone grafts because of their ease of sampling and good biocompatibility. However, not all the existing materials can fulfill the excellent properties of promoting bone regeneration, while new materials are difficult to tap. The advent of the age of big data has enabled artificial intelligence to provide fresh insights for materials discovery. Machine learning is a branch of AI, which can complete complex calculations and data analysis accurately and efficiently, so as to realize the discovery and reuse of materials. This article describes various machine learning models and reviews their examples in predicting the properties of bone regeneration materials, including biocompatibility, mechanical properties, toxicity, antibacterial properties, degradability, angiogenic and osteogenic properties. It allows people to more systematically capture a whole picture of bone regeneration, and hopefully provides a useful glimpse into the discovery of materials for bone regeneration.
引用
收藏
页数:11
相关论文
共 136 条
[51]   Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach [J].
Kang, Yunqing ;
Mochizuki, Naoto ;
Khademhosseini, Ali ;
Fukuda, Junji ;
Yang, Yunzhi .
ACTA BIOMATERIALIA, 2015, 11 :449-458
[52]   Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold [J].
Kang, Yunqing ;
Kim, Sungwoo ;
Fahrenholtz, Monica ;
Khademhosseini, Ali ;
Yang, Yunzhi .
ACTA BIOMATERIALIA, 2013, 9 (01) :4906-4915
[53]   Deep learning-based clustering approaches for bioinformatics [J].
Karim, Md Rezaul ;
Beyan, Oya ;
Zappa, Achille ;
Costa, Ivan G. ;
Rebholz-Schuhmann, Dietrich ;
Cochez, Michael ;
Decker, Stefan .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) :393-415
[54]   Discovery of high-entropy ceramics via machine learning [J].
Kaufmann, Kevin ;
Maryanovsky, Daniel ;
Mellor, William M. ;
Zhu, Chaoyi ;
Rosengarten, Alexander S. ;
Harrington, Tyler J. ;
Oses, Corey ;
Toher, Cormac ;
Curtarolo, Stefano ;
Vecchio, Kenneth S. .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[55]   Machine learning and big data provide crucial insight for future biomaterials discovery and research [J].
Kerner, Jacob ;
Dogan, Alan ;
von Recum, Horst .
ACTA BIOMATERIALIA, 2021, 130 :54-65
[56]   Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions [J].
Kim, Chiho ;
Chandrasekaran, Anand ;
Tran Doan Huan ;
Das, Deya ;
Ramprasad, Rampi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (31) :17575-17585
[57]   Application of Artificial Intelligence at All Stages of Bone Tissue Engineering [J].
Kolomenskaya, Ekaterina ;
Butova, Vera ;
Poltavskiy, Artem ;
Soldatov, Alexander ;
Butakova, Maria .
BIOMEDICINES, 2024, 12 (01)
[58]   Deep learning for cardiovascular medicine: a practical primer [J].
Krittanawong, Chayakrit ;
Johnson, Kipp W. ;
Rosenson, Robert S. ;
Wang, Zhen ;
Aydar, Mehmet ;
Baber, Usman ;
Min, James K. ;
Tang, W. H. Wilson ;
Halperin, Jonathan L. ;
Narayan, Sanjiv M. .
EUROPEAN HEART JOURNAL, 2019, 40 (25) :2058-+
[59]   Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model [J].
Kuepfer, L. ;
Niederalt, C. ;
Wendl, T. ;
Schlender, J-F ;
Willmann, S. ;
Lippert, J. ;
Block, M. ;
Eissing, T. ;
Teutonico, D. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2016, 5 (10) :516-531
[60]   Modeling of drug release from biodegradable polymer blends [J].
Lao, Luciana Lisa ;
Venkatraman, Subbu S. ;
Peppas, Nicholas A. .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2008, 70 (03) :796-803